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XLIM, Université de Limoges, France

COD Seminar (TUM) - June 20, 2023



PSSI problem A first observation An attack against PSSI Mitigation and new parameters Conclusion

Families of post-quantum signatures

Euclidean lattices

Error-correcting codes

Hamming metric
Rank metric

Isogenies

Quadratic Multivariate

Hash-based

2 / 47



PSSI problem A first observation An attack against PSSI Mitigation and new parameters Conclusion

Hamming metric

Definition (Hamming weight)

The Hamming weight of a word x ∈ (Fq)
n is its number of non-zero

coordinates :
w(x) = #{i : xi ̸= 0}

Definition (Hamming support)

The Hamming support of a word x ∈ (Fq)
n is the set of indexes of

its non-zero coordinates :

Supp(x) = {i : xi ̸= 0}
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Rank metric

In the rank metric, coordinates are in Fqm (which is a field extension
of Fq of degree m).

Definition (Rank weight)

Let γ = (γ1, ..., γm) be an Fq-basis of Fqm . A word
x = (x1, ..., xn) ∈ (Fqm)

n can be unfolded against γ :

M(x) =

x1,1 . . . xn,1
...

...
x1,m . . . xn,m

 ∈Mm,n(Fq)

where xi =
∑m

j=1 xi ,jγj .
The rank weight of x is defined as the rank of this matrix :

wr (x) = rkM(x) ∈ [0,min(m, n)]
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Rank metric

Definition (Rank support)

The support of a word x = (x1, ..., xn) ∈ (Fqm)
n is the Fq-subspace

of Fqm generated by its coordinates :

Suppr (x) = VectFq(x1, ..., xn)

And likewise the Hamming metric, the rank weight is equal to the
dimension of the rank support.
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Difficult problems in code-based cryptography

Definition (Syndrome Decoding SD(n, k ,w))

Given a random parity check matrix H ∈Mn−k,n(Fq) and a
syndrome s = He for e an error of Hamming weight wh(e) = w ,
find e.

Definition (Rank Syndrome Decoding RSD(m, n, k ,w))

Given a random parity check matrix H ∈Mn−k,n(Fqm) and a
syndrome s = He for e an error of rank weight wr (e) = w , find e.
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Durandal signature scheme

Rank-based signature presented at EUROCRYPT’19 [ABG+19]

Adaptation of Schnorr-Lyubashevsky proof of knowledge, with
variations to avoid attacks

Fiat-Shamir heuristic to transform into a signature scheme

No equivalent found for Hamming metric

Based on problems : RSL, IRSD, PSSI
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Major types of post-quantum signatures

Hash and Sign

Efficient

Enables advanced protocols (IBE, ABE...)

Hard to design

Fiat-Shamir

Balanced performance

Often based on ad-hoc difficult problems

Hash-based

High security

Small public key

Large signature size, slow to verify
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Comparaison of post-quantum signatures

Name Family Type pk size σ size

ECDSA (Ed25519) Classic 32B 64B

Falcon Lattice H&S 897B 666B

CRYSTALS-DILITHIUM Lattice F-S 1,3kB 2,4kB

WAVE [DAST19] Hamming H&S 3MB 1,6kB

SD-in-the-Head
(3s) [FJR22]

Hamming F-S 144B 8,5kB

Durandal-I Rank F-S 15.2kB 4.1kB

MAYO [Beu22] Multivariate H&S 518B 494B

SPHINCS+ (128s) Hash 64B 8kB
Comparison of a few post-quantum signatures for 128 bits of security.
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Comparaison of post-quantum signatures
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What has happened with Durandal since 2019 ?

Resistant to attacks since 2019

Better understanding of the RSL problem (algebraic attack in
2021 [BB21], combinatorial attack in 2022 [BBBG22])

PSSI reduction to MinRank (ongoing work)

New combinatorial attack on PSSI (this talk, breaks existing
parameters in ≈ 266 attempts)

Optimizations and size-performance tradeoffs
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Notation

Gr(d ,Fqm) is the set of subspaces of Fqm of Fq-dimension d .

x
$← X means that x is chosen uniformly at random in X

For E ,F Fq-subspaces of Fqm , the product space EF is defined
as :

EF := VectFq{ef |e ∈ E , f ∈ F}

If (e1, ..., er ) and (f1, ..., fd) are basis of E and F , then
(ei fj)1≤i≤r ,1≤j≤d contains a basis of EF .

15 / 47



PSSI problem A first observation An attack against PSSI Mitigation and new parameters Conclusion

Product space : example

Example

(1, α, α2, α3, α4, α5) is a base of F26 ≈ F2[α].
As an exemple, let :

E = Vect{1, α} = {0, 1, α, 1 + α}
F = Vect{α2, α4} = {0, α2, α4, α2 + α4}

EF = Vect{α2, α3, α4, α5}
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PSSI problem

Definition (PSS sample)

Let E ⊂ Fqm a subspace of Fq-dimension r . A Product Space
Subspace (PSS) sample is a pair of subspaces (F ,Z ) defined as
follows :

F
$← Gr(d ,Fqm)

U
$← Gr(rd − λ,EF ) such that {ef |e ∈ E , f ∈ F} ∩ U = {0}

W
$← Gr(w ,Fqm)

Z = W + U
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PSS sample : example

Example

We keep the same field F26 ≈ F2[α] with

E = Vect{1, α} = {0, 1, α, 1 + α}
F = Vect{α2, α4} = {0, α2, α4, α2 + α4}

EF = Vect{α2, α3, α4, α5}

U = Vect{α3 + α5} → NOK

U = Vect{α2 + α5} → OK
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PSSI problem

Definition (Random sample)

A random sample is a couple of subspaces (F ,Z ) with :

F
$← Gr(d ,Fqm)

Z
$← Gr(w + rd − λ,Fqm)

F and Z are independent
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PSSI problem

Definition (PSSI problem, from Durandal [ABG+19])

The Product Spaces Subspaces Indistinguishability (PSSI) problem
consists in deciding whether N samples (Fi ,Zi ) are PSS samples or
random samples.

Definition (Search-PSSI problem)

Given N PSS samples (Fi ,Zi ), the search-PSSI problem consists in
finding the vector space E of dimension r .
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What happens if λ = 0?

There is no filtration : (F ,Z ) = (F ,W + EF ).
Take (f1, ..., fd) a basis of F .

To find E in one sample, compute :

A =
d⋂

i=1

f −1
i Z

Similar arguments than LRPC decoding :

f −1
i Z = f −1

i f1E + ...+ E + ...+ f −1
i fdE + f −1

i W

= E + Ri

Caveat : dim(Z ) needs to be significantly lower than m.
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Practical parameters for PSSI

m w r d λ

241 57 6 6 12

Secret : E ⊂ F2241

dim(E ) = 6

PSS sample : (F ,Z ) ⊂ F2241

dim(F ) = 6

dim(Z ) = 81

Z = W + U with U ⊊ EF
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Existing attack for PSSI

Choose A ⊂ F a subspace of dimension 2 and check whether

dim(AZ ) < 2(w + rd − λ)

Proposition ([ABG+19])

The advantage of the distinguisher is of the order of q(rd−λ)−m.

Several problems :

The distinguisher only uses one signature ;

It does not depend on w ;

It does not allow to recover the secret space E .
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Combining two instances

Simplifying assumption : w = 0,m very large.

Combine two PSSI instances (F1,Z1), (F2,Z2) by computing

A := F1Z2 + F2Z1 ⊂ E (F1F2)

With great probability,

A = E (F1F2)

(F1Z2 + F2Z1 is not filtered in E (F1F2))
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A partial explanation

If there exists (e1, e2, f1, f
′
1 , f2, f

′
2) such that

e1f1 + e2f
′
1 = z1 ∈ Z1

e1f2 + e2f
′
2 = z2 ∈ Z2

then
f ′1z2 − f ′2z1 = e1(f

′
1f2 − f ′2f1)
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Protection by m

Recall that

dimF = d

dimZ = w + rd − λ

so

dimF1Z2 + F2Z1 = 2d(w + rd − λ) > m

but we can take subspaces of F1 and F2 to remain below m !

m w r d λ w + rd − λ

241 57 6 6 12 81
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Refining the first observation

By drawing randomly

(f1, f
′
1)

$← F1, (f2, f
′
2)

$← F2

we get a possibility of having a product element ef (with
e ∈ E , f ∈ F1F2) :

ef ∈ f1
′Z2 + f ′2Z1

We need :

A way to recover this element e ∈ E ;

A precise probability of recovering e
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Simultaneous 2-sums

If the attacker is lucky, after drawing random couples

(f1, f
′
1)

$← F1, (f2, f
′
2)

$← F2, (f3, f
′
3)

$← F3, (f4, f
′
4)

$← F4,

there exists a couple (e, e ′) ∈ E 2, such that a system (S) of four
conditions is verified :

(S) :


ef1 + e ′f ′1 = z1 ∈ Z1

ef2 + e ′f ′2 = z2 ∈ Z2

ef3 + e ′f ′3 = z3 ∈ Z3

ef4 + e ′f ′4 = z4 ∈ Z4
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Cramer formulas

(S) :


ef1 + e ′f ′1 = z1 ∈ Z1

ef2 + e ′f ′2 = z2 ∈ Z2

ef3 + e ′f ′3 = z3 ∈ Z3

ef4 + e ′f ′4 = z4 ∈ Z4

e =

∣∣∣∣zi f ′i
zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ .
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Cramer formulas

(S) :


ef1 + e ′f ′1 = z1 ∈ Z1

ef2 + e ′f ′2 = z2 ∈ Z2

ef3 + e ′f ′3 = z3 ∈ Z3

ef4 + e ′f ′4 = z4 ∈ Z4

e ∈ Ai ,j =

∣∣∣∣Zi f ′i
Zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ =
f ′j Zi + f ′i Zj∣∣∣∣fi f ′i

fj f ′j

∣∣∣∣ .
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Cramer formulas

(S) :


ef1 + e ′f ′1 = z1 ∈ Z1

ef2 + e ′f ′2 = z2 ∈ Z2

ef3 + e ′f ′3 = z3 ∈ Z3

ef4 + e ′f ′4 = z4 ∈ Z4

⟨e⟩ =
⋂
i ̸=j

∣∣∣∣Zi f ′i
Zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ .
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The attack

Input : Four PSSI samples (F1,Z1), (F2,Z2), (F3,Z3), (F4,Z4)

Step 1 : Draw

(f1, f
′
1)

$← F1, (f2, f
′
2)

$← F2, (f3, f
′
3)

$← F3, (f4, f
′
4)

$← F4

Step 2 : Compute

B =
⋂
i ̸=j

∣∣∣∣Zi f ′i
Zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ .
Step 3 : If dim(B) = 0 or dim(B) > 1, go back to Step 1.

Step 4 : If B = ⟨e⟩, add e to Eguess and restart with new
samples.
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Probability of existence of 2-sums

Heuristic

Let (e1, e2) ∈ E and U ⊂ EF filtered of dimension rd − λ.

For (f1, f2)
$← F the event

e1f1 + e2f2 ∈ U

happens with probability q−λ.
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Probability of existence of 2-sums

Lemma

Let (fi , f
′
i )

$← Fi for i ∈ [1, 4]. Under the previous heuristic, and if
λ = 2r , the probability ε that there exists a pair (e, e ′) ∈ E 2, such
that the system (S) of four conditions is verified

(S) :


ef1 + e ′f ′1 = z1 ∈ Z1

ef2 + e ′f ′2 = z2 ∈ Z2

ef3 + e ′f ′3 = z3 ∈ Z3

ef4 + e ′f ′4 = z4 ∈ Z4

admits an asymptotic development

ε = q−6r + or→∞(q−10r )
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Does this really work ?

We want the chain of intersections

B =
⋂
i ̸=j

∣∣∣∣Zi f ′i
Zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ .
to be equal to {0}, in general.

All the subspaces fiZj + fjZi are of dimension 2(w + rd − λ).

m w r d λ 2(w + rd − λ)

241 57 6 6 12 162
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Probabilities on the intersection of two vector spaces

Heuristic

Let A and B be uniformly random and independent subspaces of
Fqm of dimension a and b, respectively.

If a+ b < m, then P(dim(A ∩ B) > 0) ≈ qa+b−m ;

If a+ b ≥ m, then the most probable outcome is
dim(A ∩ B) = a+ b −m.
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Generalization to n intersections

Heuristic

For 1 ≤ i ≤ n, let Ai
$← Gr(a,Fqm) be independent subspaces of

fixed dimension a.

If na < (n − 1)m, then P(dim(
⋂n

i=1 Ai ) > 0) ≈ qna−(n−1)m ;

If na ≥ (n − 1)m, then the most probable outcome is
dim(

⋂n
i=1 Ai ) = na− (n − 1)m ;

In our setting :

a = 162,m = 241, n = 4

P(dim(B) > 0) ≈ q−75
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Total complexity of the attack

Proposition

The average complexity of the attack is :

(r +
1

q − 1
)× 160m(w + rd − λ)2 × q6r

operations in Fq.

Theoretical complexity

Durandal-I 266

Durandal-II 273
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Experimental results
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Combinatorial factor of the attack

≈ q6r

(when λ = 2r)

Increase λ ⇒ Impossible due to inexistence of solution
Decrease m ⇒ Impossible due to Singleton bound
Increase r ⇒ Very large parameters... (m ≥ 400)

Increase q !
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New parameters

q m k n w r d λ

2 241 101 202 57 6 6 12

pk size σ size MaxMinors [BBC+20] Our attack

15.2KB 4.1KB 98 56

↓
q m k n w r d λ

4 173 85 170 5 8 9 18

pk size σ size MaxMinors [BBC+20] Our attack

14.7KB 5.1KB 232 128

Keygen Signature Verification

5ms 350ms 2ms
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Conclusion

Analysis of a less studied problem at the core of a competitive
signature scheme

New secure parameters remain attractive

Optimizations makes the scheme even more competitive
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Perspectives

Refine the analysis on the security of PSSI problem

Tweak to avoid the new attack on PSSI without penalizing the
parameters
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Thank you for your attention !
ePrint : 2023/926
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A partial explanation

If there exists (e1, e2) ∈ E 2 such that

e1f1 + e2f
′
1 = z1 ∈ Z1

e1f2 + e2f
′
2 = z2 ∈ Z2

then
f ′1z2 + f ′2z1 = e1(f

′
1f2 + f ′2f1)
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Impossibility to avoid 2-sums

Fqm

E

FEF

U
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Refining the first observation

By drawing randomly a matrix(
f1 f ′1
f2 f ′2

)
(f1, f

′
1)

$← F1, (f2, f
′
2)

$← F2

we get (roughly) q−4d chances of having a product element ef
(with e ∈ E , f ∈ F1F2) :

ef ∈ f ′1Z2 + f ′2Z1

We need :

A way to recover this element e ∈ E ;

A precise probability of recovering e
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The attack

We consider three samples :

(F1,Z1)

(F2,Z2)

(F3,Z3)

Let (f1, f
′
1)

$← F1. With probability greater than

(1− 1/e)3 ≈ 0, 25

there exists elements such that

e1f1 + e2f
′
1 = z1 ∈ Z1 (1)

e1f2 + e2f
′
2 = z2 ∈ Z2 (2)

e1f3 + e2f
′
3 = z3 ∈ Z3 (3)
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Recovering elements of E

Suppose

(
f1 f ′1
f2 f ′2

)
invertible, we can recover e1 and e2 with

e1 =

∣∣∣∣z1 f ′1
z2 f ′2

∣∣∣∣∣∣∣∣f1 f ′1
f2 f ′2

∣∣∣∣ ∈
∣∣∣∣Z1 f ′1
Z2 f ′2

∣∣∣∣∣∣∣∣f1 f ′1
f2 f ′2

∣∣∣∣ =

∣∣∣∣f1 f ′1
f2 f ′2

∣∣∣∣−1

(f ′2Z1 + f ′1Z2)

Similarly,

e2 ∈
∣∣∣∣f1 f ′1
f2 f ′2

∣∣∣∣−1

(f2Z1 + f1Z2)
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Combining signatures two by two

Compute

A :=
f ′2Z1 + f ′1Z2∣∣∣∣f1 f ′1

f2 f ′2

∣∣∣∣
⋂ f ′3Z1 + f ′1Z3∣∣∣∣f1 f ′1

f3 f ′3

∣∣∣∣
⋂ f ′3Z2 + f ′2Z3∣∣∣∣f2 f ′2

f3 f ′3

∣∣∣∣
With great probability,

If we are in the case of equations (1), (2) and (3) then
A = Vect(e1)

Else, A = {0} and we retry with other random (f2, f
′
2 , f3, f

′
3).

Probability of success ≈ 0.25q−4d
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Signing process in Durandal

To produce a Durandal signature, we need to solve a system :

z = cS ′ + pS

with

p ∈ F 4k unknown

Supp(z) ⊂ U filtered subspace in EF of codimension λ

c depending on the message

S and S ′ the secret key
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Signing process in Durandal

It is shown to be equivalent to solving :

M


p11
...
piℓ
...

plkd

 = b (4)

where M is the binary matrix

M = (πh(fℓS ij))11≤iℓ≤lkd ,11≤hj≤λn (5)

(πh is the projector on the last λ coordinates of EF )
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Naive inversion

M is a large λn × λn binary matrix.

Cost : O((λn)ω)
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Spotting structure in M

M is composed of ideal blocks Mℓ,h = πh(fℓS)

M1,1

· · ·

· · ·

M1,λ

...
...Mℓ,h

Md ,1

· · ·

· · ·
Md ,λ
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Spotting structure in M

Each block is of size k × k and can be inverted with Euclid’s
algorithm (with cost O(k log k)).

We then use Strassen algorithm :

Naive Ours

Cost O((λn)ω) O(λωn log n)

Keygen Signature Verification

5ms 350ms 5ms
40ms
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Variant scheme

Sign

y $← (W + EF )n

x = yH⊤

Verify

x = Hz⊤ + S ′c⊤ + Sp⊤

Sign

x̂ $← Fb
qm

Solve x̂ = yĤ
⊤
with

Supp(y) = W + EF
x = yH⊤

Verify

Solve
x̂ = Ĥz⊤ + Ŝ

′
c⊤ + Ŝp⊤ with

Supp(z)
x = Hz⊤ + S ′c⊤ + Sp⊤
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