Analysis of the security of the PSSI problem and cryptanalysis of Durandal signature scheme

Nicolas Aragon, Victor Dyseryn, Philippe Gaborit

XLIM, Université de Limoges, France

GT C2 - January 27, 2023

Families of post-quantum algorithms

- Euclidean lattices
- Error-correcting codes
 - Hamming metric
 - Rank metric
- Isogenies
- Quadratic Multivariate
- Hash-based

Definition (Hamming weight)

The Hamming weight of a word $\mathbf{x} \in (\mathbb{F}_q)^n$ is its number of non-zero coordinates :

$$w(\mathbf{x}) = \#\{i : x_i \neq 0\}$$

Definition (Hamming support)

The Hamming support of a word $\mathbf{x} \in (\mathbb{F}_q)^n$ is the set of indexes of its non-zero coordinates :

$$Supp(\mathbf{x}) = \{i : x_i \neq 0\}$$

In the rank metric, words are in \mathbb{F}_{q^m} (which is a field extension of \mathbb{F}_q of degree m).

Definition (Rank weight)

Let $\gamma=(\gamma_1,...,\gamma_m)$ be an \mathbb{F}_q -base of \mathbb{F}_{q^m} . A word $\mathbf{x}=(x_1,...,x_n)\in (\mathbb{F}_{q^m})^n$ can be unfolded against γ :

$$\mathcal{M}(\mathbf{x}) = \begin{pmatrix} x_{1,1} & \dots & x_{n,1} \\ \vdots & & \vdots \\ x_{1,m} & \dots & x_{n,m} \end{pmatrix} \in \mathcal{M}_{m,n}(\mathbb{F}_p)$$

where $x_i = \sum_{j=1}^m x_{i,j} \gamma_j$.

The rank weight of x is defined as the rank of this matrix:

$$w_r(\mathbf{x}) = \operatorname{rk} \mathcal{M}(\mathbf{x}) \in [0, \min(m, n)]$$

Rank metric

PSSI problem

In the rank metric, words are in \mathbb{F}_{q^m} (which is a field extension of \mathbb{F}_a of degree m).

Definition (Rank support)

The support of a word $\mathbf{x} = (x_1, ..., x_n) \in (\mathbb{F}_{q^m})^n$ is the \mathbb{F}_q -subspace of \mathbb{F}_{q^m} generated by its coordinates :

$$Supp_r(\mathbf{x}) = Vect_{\mathbb{F}_q}(x_1, ..., x_n)$$

And likewise the Hamming metric, the rank weight is equal to the dimension of the rank support.

Difficult problems in code-based cryptography

Definition (Syndrome Decoding SD(n, k, w))

Given a random parity check matrix $\mathbf{H} \in \mathcal{M}_{n-k,n}(\mathbb{F}_q)$ and a syndrome $\mathbf{s} = \mathbf{H}\mathbf{e}$ for \mathbf{e} an error of Hamming weight $w_h(\mathbf{e}) = w$, find \mathbf{e} .

Definition (Rank Syndrome Decoding RSD(m, n, k, w))

Given a random parity check matrix $\mathbf{H} \in \mathcal{M}_{n-k,n}(\mathbb{F}_{q^m})$ and a syndrome $\mathbf{s} = \mathbf{H}\mathbf{e}$ for \mathbf{e} an error of rank weight $w_r(\mathbf{e}) = w$, find \mathbf{e} .

Durandal signature scheme

PSSI problem

- Rank-based signature presented at EUROCRYPT'19 [ABG+19]
- Adaptation of Schnorr-Lyubashevsky proof of knowledge, with variations to avoid attacks
- Fiat-Shamir heuristic to transform into a signature scheme
- No equivalent found for Hamming metric
- Based on problems : RSL, IRSD, PSSI

Hash and Sign

PSSI problem

- Efficient
- Enables advances protocols (IBE, ABE...)
- Hard to design

Fiat-Shamir

- Balanced performance
- Often based on ad-hoc difficult problems

Hash-based

- High security
- Small public key
- Large signature size, slow to verify

Comparaison of post-quantum signatures

Nom	Family	Туре	pk size	σ size
ECDSA (Ed25519)	Classic		32B	64B
Falcon	Lattice	H&S	897B	666B
CRYSTALS-DILITHIUM	Lattice	F-S	1,3kB	2,4kB
WAVE [DAST19]	Hamming	H&S	3MB	1,6kB
SD-in-the-Head (3s) [FJR22]	Hamming	F-S	144B	8,5kB
Durandal-I	Rank	F-S	15.2kB	4.1kB
MAYO [Beu22]	Multivariate	H&S	518B	494B
SPHINCS+ (128s)	Hash	C 1	64B	8kB

Comparison of a few post-quantum signatures for 128 bits of security.

What has happened with Durandal since 2019?

- Resistant to attacks since 2019
- Better understanding of the RSL problem (algebraic attack in 2021 [BB21], combinatorial attack in 2022 [BBBG22])
- PSSI reduction to MinRank (ongoing work)
- New combinatorial attack on PSSI (ongoing work, breaks existing parameters in $\approx 2^{36}$ attempts)
- Optimizations and size-performance tradeoffs

What has happened with Durandal since 2019?

- Resistant to attacks since 2019
- Better understanding of the RSL problem (algebraic attack in 2021 [BB21], combinatorial attack in 2022 [BBBG22])
- PSSI reduction to MinRank (ongoing work)
- New combinatorial attack on PSSI (ongoing work, breaks existing parameters in $\approx 2^{36}$ attempts)
- Optimizations and size-performance tradeoffs

- PSSI problem
- A first observation
- An attack against PSSI
- Mitigation and new parameters
- Conclusion and perspectives

- PSSI problem
- A first observation
- An attack against PSSI

Notation

- $\mathbf{Gr}(d, \mathbb{F}_{q^m})$ is the set of subspaces of \mathbb{F}_{q^m} of \mathbb{F}_{q} -dimension d.
- $x \stackrel{\$}{\leftarrow} X$ means that x is chosen uniformly at random in X
- ullet For E,F subspaces of \mathbb{F}_{q^m} , the product space EF is defined as :

$$EF := Vect_{\mathbb{F}_q} \{ ef | e \in E, f \in F \}$$

If $(e_1,...,e_r)$ and $(f_1,...,f_d)$ are basis of E and F, then $(e_if_j)_{1\leq i\leq r,1\leq j\leq d}$ contains a basis of EF.

Product space : example

Example

 $(1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5)$ is a base of $\mathbb{F}_{2^6} \approx \mathbb{F}_2[\alpha]$.

As an exemple, let:

$$E = Vect\{1, \alpha\} = \{0, 1, \alpha, 1 + \alpha\}$$
$$F = Vect\{\alpha^{2}, \alpha^{4}\} = \{0, \alpha^{2}, \alpha^{4}, \alpha^{2} + \alpha^{4}\}$$

$$EF = Vect\{\alpha^2, \alpha^3, \alpha^4, \alpha^5\}$$

Definition (PSS sample)

Let $E \subset \mathbb{F}_{q^m}$ a subspace of \mathbb{F}_q -dimension r. A Product Space Subspace (PSS) sample is a couple of subspaces (F, Z) defined as follows :

- $F \stackrel{\$}{\leftarrow} \mathbf{Gr}(d, \mathbb{F}_{q^m})$
- $U \stackrel{\$}{\leftarrow} \mathbf{Gr}(rd \lambda, \mathbf{E}F)$ such that $\{ef | e \in \mathbf{E}, f \in F\} \cap U = \{0\}$
- $W \stackrel{\$}{\leftarrow} \mathbf{Gr}(w, \mathbb{F}_{q^m})$
- Z = W + U

PSS sample : example

Example

We keep the same field $\mathbb{F}_{2^6} pprox \mathbb{F}_2[lpha]$ with

$$E = Vect\{1, \alpha\} = \{0, 1, \alpha, 1 + \alpha\}$$

$$F = Vect\{\alpha^2, \alpha^4\} = \{0, \alpha^2, \alpha^4, \alpha^2 + \alpha^4\}$$

$$EF = Vect\{\alpha^2, \alpha^3, \alpha^4, \alpha^5\}$$

$$U = Vect\{\alpha^3 + \alpha^5\} \rightarrow NOK$$

$$U = Vect\{\alpha^2 + \alpha^5\} \rightarrow OK$$

Definition (Random sample)

A random sample is a couple of subspaces (F, Z) with :

- $\bullet \ \ \digamma \stackrel{\$}{\leftarrow} \mathbf{Gr}(d,\mathbb{F}_{q^m})$
- $Z \stackrel{\$}{\leftarrow} \mathbf{Gr}(w + rd \lambda, \mathbb{F}_{q^m})$
- F and Z are independent

Definition (PSSI problem, from Durandal [ABG⁺19])

The Product Spaces Subspaces Indistinguishability (PSSI) problem consists in deciding whether N samples (F_i, Z_i) are PSS samples or random samples.

Definition (Search-PSSI problem)

Given N PSS samples (F_i, Z_i) , the search-PSSI problem consists in finding the vector space E of dimension r.

What happens if $\lambda = 0$?

There is no filtration : (F, Z) = (F, W + EF). Take $(f_1, ..., f_d)$ a basis of F.

To find E in one sample, compute :

$$A = \bigcap_{i=1}^d f_i^{-1} Z$$

Similar arguments than LRPC decoding :

$$f_i^{-1}Z = f_i^{-1}f_1E + ... + E + ... + f_i^{-1}f_dE + f_i^{-1}W$$

= $E + R_i$

Practical parameters for PSSI

m	W	r	d	λ
241	57	6	6	12

Secret :
$$E \subset \mathbb{F}_{2^{241}}$$

 $\dim(E) = 6$

PSS sample :
$$(F,Z)\subset \mathbb{F}_{2^{241}}$$

$$\dim(F)=6$$

$$\dim(Z)=81$$
 $Z=W+U$ with $U\subsetneq EF$

Existing attack for PSSI

Choose $A \subset F$ a subspace of dimension 2 and check whether

$$\dim(AZ) < 2(w + rd - \lambda)$$

Proposition ([ABG⁺19])

The advantage of the distinguisher is of the order of $q^{(rd-\lambda)-m}$.

Choose $A \subset F$ a subspace of dimension 2 and check whether

$$\dim(AZ) < 2(w + rd - \lambda)$$

Proposition ([ABG+19])

The advantage of the distinguisher is of the order of $q^{(rd-\lambda)-m}$.

Several problems:

- The distinguisher only uses one signature;
- It does not depend on w;
- It does not allow to recover the secret space E.

- A first observation
- An attack against PSSI

Impossibility to avoid 2-sums (for $\lambda = 2r = 2d$)

Protection by *m*

Recall that

• dim
$$Z = w + rd - \lambda$$

SO

$$\dim F_1 Z_2 + F_2 Z_1 = 2d(w + rd - \lambda) > m$$

but we can take subspaces of F_1 and F_2 to remain below m!

m	W	r	d	λ	$w + rd - \lambda$
241	57	6	6	12	81

- An attack against PSSI

By drawing randomly a matrix

$$\begin{pmatrix} f_1 & f_1' \\ f_2 & f_2' \end{pmatrix} \quad (f_1, f_1') \stackrel{\$}{\leftarrow} F_1, (f_2, f_2') \stackrel{\$}{\leftarrow} F_2$$

we get (roughly) q^{-4d} chances of having a product element ef (with $e \in E$, $f \in F_1F_2$):

$$ef \in f_1'Z_2 + f_2'Z_1$$

We need:

PSSI problem

- A way to recover this element $e \in E$;
- A precise probability of recovering e

Probability of existence of 2-sums

Heuristic

PSSI problem

Let $(e_1, e_2) \in E$ and $U \subset EF$ filtered of dimension $rd - \lambda$. Suppose $\lambda = 2d = 2r$, then for $(f_1, f_2) \in F$ the event

$$e_1 f_1 + e_2 f_2 \in U$$

happens with probability $q^{-\lambda}$.

Probability of existence of 2-sums

Lemma

PSSI problem

Let $(f_i, f_i') \stackrel{\$}{\leftarrow} F_i$ for $i \in 1..3$. Under the previous heuristic, the probability ε that there exists a couple $(e, e') \in E^2$, such that the system (S) of three conditions is verified

$$(S): \begin{cases} ef_1 + e'f_1' = z_1 \in Z_1 \\ ef_2 + e'f_2' = z_2 \in Z_2 \\ ef_3 + e'f_3' = z_3 \in Z_3 \end{cases}$$

admits an asymototic development

$$\varepsilon = q^{-4r} + o_{r \to \infty}(q^{-8r})$$

An attack with three signatures

Recovering elements of *E*

An attack against PSSI

We want the chain of intersections

$$A := \frac{f_2'Z_1 + f_1'Z_2}{\begin{vmatrix} f_1 & f_1' \\ f_2 & f_2' \end{vmatrix}} \bigcap \frac{f_3'Z_1 + f_1'Z_3}{\begin{vmatrix} f_1 & f_1' \\ f_3 & f_3' \end{vmatrix}} \bigcap \frac{f_3'Z_2 + f_2'Z_3}{\begin{vmatrix} f_2 & f_2' \\ f_3 & f_3' \end{vmatrix}}$$

to be equal to $\{0\}$, in general.

All the subspaces $f_i Z_i + f_i Z_i$ are of dimension $2(w + rd - \lambda)$.

m	W	r	d	λ	$2(w+rd-\lambda)$
241	57	6	6	12	162

Probabilities on the intersection of two vector spaces

Heuristic

PSSI problem

Let A and B be uniformly random and independent subspaces of \mathbb{F}_{q^m} of dimension a and b, respectively.

- If a + b < m, then $\mathbb{P}(\dim(A \cap B) > 0) \approx q^{a+b-m}$;
- If $a + b \ge m$, then the most probable outcome is $\dim(A \cap B) = a + b m$.

Heuristic

PSSI problem

For $1 \leq i \leq n$, let $A_i \stackrel{\$}{\leftarrow} \mathbf{Gr}(a, \mathbb{F}_{q^m})$ be independent subspaces of fixed dimension a.

- If na < (n-1)m, then $\mathbb{P}(\dim(\bigcap_{i=1}^n A_i) > 0) \approx q^{na-(n-1)m}$;
- If $na \ge (n-1)m$, then the most probable outcome is $\dim(\bigcap_{i=1}^n A_i) = na (n-1)m$;

In our setting:

- a = 162, m = 241, n = 3
- na = 486, (n-1)m = 482

Most probable outcome : dim(A) = 4

Let's refine again!

We consider four samples:

$$(F_1, Z_1), (F_2, Z_2), (F_3, Z_3), (F_4, Z_4)$$

and we draw matrices:

$$\begin{pmatrix} f_1 & f_1' \\ f_2 & f_2' \\ f_3 & f_3' \\ f_4 & f_4' \end{pmatrix}$$

with (f_1, f_1') fixed.

Probability of success $\approx q^{-6r}$

And now 6 vectors spaces to intersect!

PSSI problem

Total complexity of the attack

The average number of operations on \mathbb{F}_q is :

$$(r+\frac{1}{q-1})\times 160m(w+rd-\lambda)^2\times q^{6r}$$

 $(\approx 2^{66}$ with the parameters presented in original Durandal paper)

Summary

- PSSI problem
- 2 A first observation
- 3 An attack against PSSI
- 4 Mitigation and new parameters
- Conclusion and perspectives

PSSI problem

Probability of success of the attack

$$\approx q^{-6d}$$
(when $\lambda = 2r = 2d$)

```
Increase \lambda \Rightarrow
                      Impossible due to inexistence of solution
Decrease m \Rightarrow \text{Impossible due to Singleton bound}
 Increase d
                \Rightarrow Very large parameters... (m > 400)
```

Increase q!

New parameters

q	m		k		n	w	r	d	λ	
2	241		101	L	202	57	6	6	12	
pk siz	pk size σ s		size	MaxMinors [BBC+20]			Our	Our attack		
15.2K	В	4.1KB			98			56		

q	1	n	k		n	W	r	d	λ
4	1	.73 8			170	5	8	9	18
pk siz	ize σ size		size	MaxMinors [BBC ⁺ 20]			Our attack		
14.7K	В	5.1KB		232				128	
Keygen			Signature			\	Verification		
5ms			350ms				2ms		

Summary

- PSSI problem
- 2 A first observation
- An attack against PSSI
- 4 Mitigation and new parameters
- 5 Conclusion and perspectives

Conclusion

- Analysis of a less studied problem at the core of a competitive signature scheme
- New secure parameters remain attractive
- Optimizations makes the scheme even more competitive

Perspectives

- Refine the analysis on the security of PSSI problem
- Tweak to avoid the new attack on PSSI without penalizing the parameters

Thank you for your attention!

References I

Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles Zémor.

Durandal: a rank metric based signature scheme.

In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, pages 728–758, 2019.

Magali Bardet and Pierre Briaud.

An algebraic approach to the rank support learning problem. In <u>International Conference on Post-Quantum Cryptography</u>, pages 442–462. Springer, 2021.

References II

Loïc Bidoux, Pierre Briaud, Maxime Bros, and Philippe Gaborit. Rqc revisited and more cryptanalysis for rank-based cryptography.

arXiv preprint arXiv :2207.01410, 2022.

Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel.

Improvements of algebraic attacks for solving the rank decoding and minrank problems.

In <u>International Conference on the Theory and Application of Cryptology and Information Security</u>, pages 507–536. Springer, 2020.

References III

Ward Beullens.

Mayo: practical post-quantum signatures from oil-and-vinegar maps.

In Selected Areas in Cryptography: 28th International Conference, Virtual Event, September 29–October 1, 2021, Revised Selected Papers, pages 355–376. Springer, 2022.

Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich.

Wave: A new family of trapdoor one-way preimage sampleable functions based on codes.

In Advances in Cryptology—ASIACRYPT 2019: 25th
International Conference on the Theory and Application of
Cryptology and Information Security, Kobe, Japan, December
8–12, 2019, Proceedings, Part I, pages 21–51. Springer, 2019.

References IV

Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head : shorter signatures from zero-knowledge proofs.

In Advances in Cryptology–CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part II, pages 541–572. Springer, 2022.

Combining two instances

We simplify and assume w = 0. We take two instances $(F_1, Z_1), (F_2, Z_2)$. We made the following observation :

- Z_1 is filtered in EF_1
- Z_2 is filtered in EF_2
- but...
- $F_1Z_2 + F_2Z_1$ is not filtered in $E(F_1F_2)$!

A partial explanation

If there exists $(e_1, e_2) \in E^2$ such that

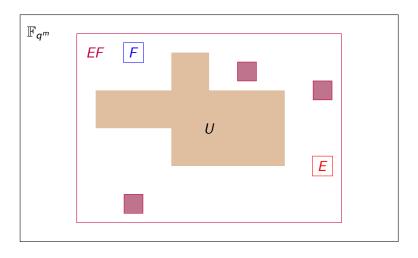
$$e_1 f_1 + e_2 f'_1 = z_1 \in Z_1$$

 $e_1 f_2 + e_2 f'_2 = z_2 \in Z_2$

then

$$f_1'z_2 + f_2'z_1 = e_1(f_1'f_2 + f_2'f_1)$$

Impossibility to avoid 2-sums



Refining the first observation

By drawing randomly a matrix

$$\begin{pmatrix} f_1 & f_1' \\ f_2 & f_2' \end{pmatrix} \quad (f_1, f_1') \stackrel{\$}{\leftarrow} F_1, (f_2, f_2') \stackrel{\$}{\leftarrow} F_2$$

we get (roughly) q^{-4d} chances of having a product element ef (with $e \in E, f \in F_1F_2$):

$$ef \in f_1'Z_2 + f_2'Z_1$$

Refining the first observation

By drawing randomly a matrix

$$\begin{pmatrix} f_1 & f_1' \\ f_2 & f_2' \end{pmatrix} \quad (f_1, f_1') \stackrel{\$}{\leftarrow} F_1, (f_2, f_2') \stackrel{\$}{\leftarrow} F_2$$

we get (roughly) q^{-4d} chances of having a product element *ef* (with $e \in E, f \in F_1F_2$):

$$ef \in f_1'Z_2 + f_2'Z_1$$

We need:

- A way to recover this element $e \in E$;
- A precise probability of recovering e

The attack

We consider three samples:

$$(F_1, Z_1)$$

 (F_2, Z_2)
 (F_3, Z_3)

Let $(f_1, f_1') \stackrel{\$}{\leftarrow} F_1$. With probability greater than

$$(1-1/e)^3 \approx 0.25$$

there exists elements such that

$$e_1f_1 + e_2f_1' = z_1 \in Z_1$$

$$f_1 + e_2 f_1' = z_1 \in Z_1$$
 (1)
 $f_2 + e_2 f_2' = z_2 \in Z_2$ (2)

$$e_1f_2 + e_2f_2' = z_2 \in Z_2$$

$$e_1f_3 + e_2f_3' = z_3 \in Z_3$$

Recovering elements of E

Suppose $\begin{pmatrix} f_1 & f_1' \\ f_2 & f_2' \end{pmatrix}$ invertible, we can recover e_1 and e_2 with

$$e_1 = \frac{\begin{vmatrix} z_1 & f_1' \\ z_2 & f_2' \end{vmatrix}}{\begin{vmatrix} f_1 & f_1' \\ f_2 & f_2' \end{vmatrix}} \in \frac{\begin{vmatrix} Z_1 & f_1' \\ Z_2 & f_2' \end{vmatrix}}{\begin{vmatrix} f_1 & f_1' \\ f_2 & f_2' \end{vmatrix}} = \begin{vmatrix} f_1 & f_1' \\ f_2 & f_2' \end{vmatrix}^{-1} (f_2'Z_1 + f_1'Z_2)$$

Similarly,

$$e_2 \in egin{bmatrix} f_1 & f_1' \ f_2 & f_2' \end{bmatrix}^{-1} ig(f_2 Z_1 + f_1 Z_2ig)$$

Combining signatures two by two

Compute

$$A := \frac{f_2'Z_1 + f_1'Z_2}{\begin{vmatrix} f_1 & f_1' \\ f_2 & f_2' \end{vmatrix}} \bigcap \frac{f_3'Z_1 + f_1'Z_3}{\begin{vmatrix} f_1 & f_1' \\ f_3 & f_3' \end{vmatrix}} \bigcap \frac{f_3'Z_2 + f_2'Z_3}{\begin{vmatrix} f_2 & f_2' \\ f_3 & f_3' \end{vmatrix}}$$

With great probability,

- If we are in the case of equations (1), (2) and (3) then $A = Vect(e_1)$
- Else, $A = \{0\}$ and we retry with other random (f_2, f'_2, f_3, f'_3) .

Probability of success $\approx 0.25q^{-4d}$

Signing process in Durandal

To produce a Durandal signature, we need to solve a system :

$$z = cS' + pS$$

with

- $p \in F^{4k}$ unknown
- Supp(z) $\subset U$ filtered subspace in EF of codimension λ
- c depending on the message
- ullet **S** and S' the secret key

Signing process in Durandal

It is shown to be equivalent to solving:

$$m{M} egin{pmatrix} m{p}_{11} \ dots \ m{p}_{i\ell} \ dots \ m{p}_{lkd} \end{pmatrix} = m{b}$$
 (4)

where M is the binary matrix

$$\mathbf{M} = (\pi_h(f_{\ell}\mathbf{S}_{ij}))_{11 \le i\ell \le lkd, 11 \le hj \le \lambda n} \tag{5}$$

 $(\pi_h \text{ is the projector on the last } \lambda \text{ coordinates of } EF)$

Naive inversion

M is a large $\lambda n \times \lambda n$ binary matrix.

 $\mathsf{Cost} \,:\, O((\lambda \mathit{n})^\omega)$

Spotting structure in *M*

 ${\pmb M}$ is composed of ideal blocks ${\pmb M}_{\ell,h}=\pi_h(f_\ell{\pmb S})$

	-,	,
$M_{1,1}$		$m{M}_{1,\lambda}$
	···	
	$oldsymbol{\mathcal{M}}_{\ell,h}$	
:	ε,π	:
$M_{d,1}$		$oldsymbol{\mathcal{M}}_{d,\lambda}$

Spotting structure in *M*

Each block is of size $k \times k$ and can be inverted with Euclid's algorithm (with cost $O(k \log k)$).

We then use Strassen algorithm:

	Naive	Ours
Cost	$O((\lambda n)^{\omega})$	$O(\lambda^{\omega} n \log n)$

Keygen	Signature	Verification
5ms	350ms	5ms
	40ms	

Variant scheme

Sign

$$\mathbf{y} \overset{\$}{\leftarrow} (W + EF)^n$$
$$\mathbf{x} = \mathbf{y}\mathbf{H}^\top$$

Verify

$$\mathbf{x} = \mathbf{H} \mathbf{z}^{\top} + \mathbf{S}' \mathbf{c}^{\top} + \mathbf{S} \mathbf{p}^{\top}$$

Variant scheme

Sign

$$\mathbf{y} \overset{\$}{\leftarrow} (W + EF)^n$$
$$\mathbf{x} = \mathbf{y}\mathbf{H}^\top$$

Verify

$$\mathbf{x} = \mathbf{H}\mathbf{z}^{\top} + \mathbf{S}'\mathbf{c}^{\top} + \mathbf{S}\mathbf{p}^{\top}$$

Sign

$$\hat{m{x}} \stackrel{\$}{\leftarrow} \mathbb{F}_{q^m}^b$$

Solve $\hat{m{x}} = m{y} \hat{m{H}}^ op$ with Supp $(m{y}) = W + EF$
 $m{x} = m{y} m{H}^ op$

Verify

Solve
$$\hat{x} = \hat{H}z^{\top} + \hat{S}'c^{\top} + \hat{S}p^{\top}$$
 with Supp (z) $x = Hz^{\top} + S'c^{\top} + Sp^{\top}$