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Permuted Kernel Problem

Definition (IPKP [Sha90])

Let m < n be positive integers, Given

H ∈ Fm×n
q ;

x ∈ Fn
q;

y ∈ Fm
q ,

the Inhomogeneous Permuted Kernel Problem IPKPq,m,n asks to
find a permutation π ∈ Sn such that

Hπ[x ] = y .
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A variant of the Permuted Kernel Problem

Definition (r-IPKP)

Let m < n and t be positive integers, Given

H ∈ Fm×n
q ;

(x1, . . . , x t) ∈ (Fn
q)

t ;

(y1, . . . , y t) ∈ (Fm
q )

t ,

the Relaxed Inhomogeneous Permuted Kernel Problem r-IPKPq,m,n,t

asks to find a permutation π ∈ Sn such that

Hπ
[ ∑
i∈[1,t]

κix i

]
=

∑
i∈[1,t]

κiy i

for some (κ1, . . . , κt) ∈ (Fq)
t \{(0, . . . , 0)}.

3 / 43



Motivation Mono-IPKP r-IPKP Multi-IPKP Concrete security

Multi-dimensional IPKP

Definition (IPKP [LP11])

Let m < n and t be positive integers, Given

H ∈ Fm×n
q ;

(x1, . . . , x t) ∈ (Fn
q)

t ;

(y1, . . . , y t) ∈ (Fm
q )

t ,

the Inhomogeneous Permuted Kernel Problem IPKPq,m,n,t asks to
find a permutation π ∈ Sn such that

Hπ[x i ] = y i

for all i ∈ [1, t].
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MPC-in-the-Head

Generic paradigm by Ishai, Kushilevitz, Ostrovsky, and
Sahai [IKOS07, IKOS09].

MPC protocol =⇒ ZK-proof

1 Prover splits secret and commits to the states;

2 Verifier sends a random challenge γ;

3 Prover simulates locally (“in the head”) all the parties, and
commits to the views;

4 Verifier chooses a random party i∗ and asks to reveal all the
views except i∗;

5 Verifier finally checks the views are consistent and with an
honest execution of the MPC protocol.
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MPC-in-the-Head and PKP

Name Type σ size

SUSHYFISH [Beu20] 5-round with helper ∼12 kB

[BG22] 5-round using structure ∼9 kB

[Fen22] 7-round ∼13 kB

Table: Comparison of recent digital signature schemes based on PKP
assumptions
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Parameters in [BG22]

PKP parameters (q, n,m) =⇒ attacks on IPKP

MPC parameters (N, τ) =⇒ KZ attack on 5-round
protocols [KZ20]

KZ attack cost depends on the challenge space (the number of
possibilities for γ).
Increasing the challenge space leads to a decrease in τ .

[BG22] our work

Challenge space Fq Ft
q
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Our parameters

PKP parameters MPC param.
Parameter Set λ q n m t N τ pk size σ size

[BG22]-fast 128 997 61 38 1 32 42 0.15 kB 9.90 kB
[BG22]-short 128 997 61 38 1 256 31 0.24 kB 8.81 kB

PERK-I-fast3 128 1021 79 35 3 32 30 0.15 kB 8.35 kB
PERK-I-fast5 128 1021 83 36 5 32 28 0.24 kB 8.03 kB
PERK-I-short3 128 1021 79 35 3 256 20 0.15 kB 6.56 kB
PERK-I-short5 128 1021 83 36 5 256 18 0.24 kB 6.06 kB

PERK-III-fast3 192 1021 112 54 3 32 46 0.23 kB 18.8 kB
PERK-III-fast5 192 1021 116 55 5 32 43 0.37 kB 18.0 kB
PERK-III-short3 192 1021 112 54 3 256 31 0.23 kB 15.0 kB
PERK-III-short5 192 1021 116 55 5 256 28 0.37 kB 13.8 kB

PERK-V-fast3 256 1021 146 75 3 32 61 0.31 kB 33.3 kB
PERK-V-fast5 256 1021 150 76 5 32 57 0.51 kB 31.7 kB
PERK-V-short3 256 1021 146 75 3 256 41 0.31 kB 26.4 kB
PERK-V-short5 256 1021 150 76 5 256 37 0.51 kB 24.2 kB

Table: Parameters of PERK signature scheme
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Performances

Parameter Set Keygen Sign Verify

PERK-I-fast3 77 k 7.6 M 5.3 M
PERK-I-fast5 88 k 7.2 M 5.1 M
PERK-I-short3 80 k 39 M 27 M
PERK-I-short5 92 k 36 M 25 M

PERK-III-fast3 167 k 16 M 13 M
PERK-III-fast5 184 k 15 M 12 M
PERK-III-short3 174 k 82 M 65 M
PERK-III-short5 194 k 77 M 60 M

PERK-V-fast3 297 k 36 M 28 M
PERK-V-fast5 322 k 34 M 27 M
PERK-V-short3 299 k 184 M 142 M
PERK-V-short5 329 k 170 M 131 M

Table: Performances of our implementation for different instances of
PERK. The key generation numbers are in kilo CPU cycles, while the
signing and verification numbers are in million CPU cycles.
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Number of solutions

Proposition

The average number of solutions for a random IPKPq,m,n instance is

n!

qm

Since all existing attacks on IPKP and variants are combinatorial,
they benefit from a speedup equal to max(1, n!

qm ).

=⇒ equivalent to Gilbert-Varshamov bound
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Georgiades algorithm [Geo92]


x1

x2


 Im H ′

 = y

x1 = y − H ′x2

⇒ enumerate x2 as every subpermutation of x of size n −m.
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Georgiades algorithm [Geo92]

Proposition (Complexity)

T = O
(

n!

(n −m)!

)

=⇒ equivalent to Prange
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Time-memory trade-off


x1

x2


 H1 H2

 = y

L1 = {(x1,H1x1) | x1 ∈ Fn/2
q sub-permutation of x}

L2 = {(x2, y − H2x2) | x2 ∈ Fn/2
q sub-permutation of x}

L1 ▷◁ L2 = {(x1, x2) | ∃z , (x1, z) ∈ L1 and (x2, z) ∈ L2}
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Time-memory trade-off

Proposition (Complexity)

T = O (|L1|+ |L2|+ |L1 ▷◁ L2|)
M = O (|L1|+ |L2|)

with

|L1| = |L2| =
n!

(n/2)!

|L1 ▷◁ L2| =
|L1| × |L2|

qm

=⇒ equivalent to Birthday Decoding
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KMP algorithm [KMP19]

Meet in the middle approach between Georgiades and TMTO

x1

x2

x3


(

Im−u H ′

0 H2 H3

)
=

(
y 1

y 2

)

x1 = y1 − H ′(x2, x3)

H2x2 + H3x3 = y2
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KMP algorithm [KMP19]

Proposition (Complexity)

T = O (|L1|+ |L2|+ |L1 ▷◁ L2|)

with

|L1| = |L2| =
(

n

(n −m + u)/2

)(
(n −m + u)/2

)
!

|L1 ▷◁ L2| =
|L1| × |L2|

qu
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Comparison

*KMP/SBC cost estimation courtesy of https://github.com/Crypto-TII/CryptographicEstimators 21 / 43
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Other attacks on IPKP

[BCCG93]

[PC94]

Joux-Jaulmes attack [JJ01]
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A variant of the Permuted Kernel Problem

Definition (r-IPKP)

Let m < n and t be positive integers, Given

H ∈ Fm×n
q ;

(x1, . . . , x t) ∈ (Fn
q)

t ;

(y1, . . . , y t) ∈ (Fm
q )

t ,

the Relaxed Inhomogeneous Permuted Kernel Problem r-IPKPq,m,n,t

asks to find a permutation π ∈ Sn such that

Hπ
[ ∑
i∈[1,t]

κix i

]
=

∑
i∈[1,t]

κiy i

for some (κ1, . . . , κt) ∈ (Fq)
t \{(0, . . . , 0)}.
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Number of solutions

Proposition

The average number of solutions for a random r-IPKPq,m,n,t

instance is
n!

qm
· q

t − 1

q − 1
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Idea of our attack

Take the smallest weight vector x in ⟨x1, . . . , x t⟩,

x =
∑
i∈[t]

κi · x i

of weight w .

Define
y =

∑
i∈[t]

κi · y i

and solve IPKP instance Hπ[x ] = y
Adapt KMP algorithm to take advantage of the n − w zeros in
x .
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KMP adaptation with zeros



x1

x2

x3



← n − w − z zeros

← z/2 zeros

← z/2 zeros

(
Im−u H ′

0 H2 H3

)
=

(
y 1

y 2

)

x1 = y1 − H ′(x2, x3)

H2x2 + H3x3 = y2
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Our attack

Proposition (Complexity)

T = O
(
TISD +

(
|L1|+ |L2|+ |L1 ▷◁ L2|

)
P
)

with

k = (n −m + u)/2 , z ≤ n − w

|L1| = |L2| =
(

k

z/2

)(
n − z

k − z/2

)
(k − z/2)!

|L1 ▷◁ L2| =
|L1| × |L2|

qu

P =

( n
n−w

)( n−2k
n−w−z

)( k
z/2

)2
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Comparison with KMP
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Comparison with KMP for higher t

30 / 43



Motivation Mono-IPKP r-IPKP Multi-IPKP Concrete security

Outline

1 Motivation

2 Attacks against mono-dimensional IPKP

3 Our attack against r-IPKP

4 Attacks against multi-dimensional IPKP

5 Concrete security estimation of r-IPKP

31 / 43



Motivation Mono-IPKP r-IPKP Multi-IPKP Concrete security

Multi-dimensional IPKP

Definition (IPKP)

Let m < n and t be positive integers, Given

H ∈ Fm×n
q ;

(x1, . . . , x t) ∈ (Fn
q)

t ;

(y1, . . . , y t) ∈ (Fm
q )

t ,

the Inhomogeneous Permuted Kernel Problem IPKPq,m,n,t asks to
find a permutation π ∈ Sn such that

Hπ[x i ] = y i

for all i ∈ [1, t].
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Number of solutions

Proposition

The average number of solutions for a random IPKPq,m,n,t instance
is

n!

qmt

IPKPq,m,n,1 r-IPKPq,m,n,t IPKPq,m,n,t

n!
qm

n!
qm · qt−1

q−1
n!
qmt
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Why do we need to consider multi-dimensional IPKP?

Normally with a random instance there is no solution for our
parameters.
However, for the signature protocol there exists a permutation π
that is a solution to multi-dimensional IPKP.
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KMP algorithm, multi-dimensional

Only the size of L1 ▷◁ L2 changes.

Proposition (Complexity)

T = O (|L1|+ |L2|+ |L1 ▷◁ L2|)

with

|L1| = |L2| =
(

n

(n −m + u)/2

)(
(n −m + u)/2

)
!

|L1 ▷◁ L2| =
|L1| × |L2|

qut
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SBC algorithm [SBC22]

KMP algorithm with ISD.



x1

x2

x ′
2

x3


(

Im−u H ′

0 0 H ′
2 H3

)
=

(
y 1

y 2

)
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Link between homogeneous PKP and SEP [SBC22]

Definition (Permutation/Subcode Equivalence Problem (PEP/SEP))

Let k ′ ≤ k ≤ n. Given two codes C[n, k] and C′[n, k ′], does there
exists a permutation π such that

π[C′] ⊆ C?

IPKP Equivalent problem Parameters

t < n −m SEP k = n −m, k ′ = t
t = n −m PEP k = k ′ = n −m
t > n −m SEP k = t, k ′ = n −m

Table: Relations between PKP, SEP and PEP, and corresponding
parameters
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Comparison
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What happens with a different density?
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Mitigating both attacks
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Conclusion

PERK was submitted to the NIST on-ramp call for digital signatures
with the following augmented team:

Najwa Aaraj, Technology Innovation Institute, UAE

Slim Bettaieb, Technology Innovation Institute, UAE

Löıc Bidoux, Technology Innovation Institute, UAE

Alessandro Budroni, Technology Innovation Institute, UAE

Victor Dyseryn, XLIM, University of Limoges, France

Andre Esser, Technology Innovation Institute, UAE

Philippe Gaborit, XLIM, University of Limoges, France

Mukul Kulkarni, Technology Innovation Institute, UAE

Victor Mateu, Technology Innovation Institute, UAE

Marco Palumbi, Technology Innovation Institute, UAE

Lucas Perin, Technology Innovation Institute, UAE

Jean-Pierre Tillich, INRIA, Paris, France
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Perspectives

Combinatorial attacks

Refine our attack
Exploit the multiple instances directly in KMP?

Algebraic attacks

Modelling of permutations in a PhD thesis [Sae17]
Polynomial attack when mt is sufficiently high (ongoing work)
No efficient attack derived so far in the typical regime
Work in progress
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Thank you for your attention !
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