## PERK: Compact Signature Scheme Based on a New Variant of the Permuted Kernel Problem

Slim Bettaieb<sup>2</sup>, Loïc Bidoux<sup>2</sup>, **Victor Dyseryn**<sup>1</sup>, Andre Esser<sup>2</sup>, Philippe Gaborit<sup>1</sup>, Mukul Kulkarni<sup>2</sup>, Marco Palumbi<sup>2</sup>

<sup>1</sup>XLIM, Université de Limoges, France <sup>2</sup>Technology Innovation Institute, UAE

GT Codes-Crypto - June 27, 2023





## Permuted Kernel Problem

#### Definition (IPKP [Sha90])

Let m < n be positive integers, Given

- $\boldsymbol{H} \in \mathbb{F}_q^{m \times n}$ ;
- $\mathbf{x} \in \mathbb{F}_q^n$ ;

• 
$$oldsymbol{y}\in\mathbb{F}_q^m$$
,

the Inhomogeneous Permuted Kernel Problem  $\mathsf{IPKP}_{q,m,n}$  asks to find a permutation  $\pi\in\mathcal{S}_n$  such that

$$\boldsymbol{H}\boldsymbol{\pi}[\boldsymbol{x}] = \boldsymbol{y}.$$

## A variant of the Permuted Kernel Problem

#### Definition (r-IPKP)

Let m < n and t be positive integers, Given

•  $\boldsymbol{H} \in \mathbb{F}_{a}^{m \times n}$ ;

• 
$$(\pmb{x}_1,\ldots,\pmb{x}_t)\in (\mathbb{F}_q^n)^t;$$

• 
$$(oldsymbol{y}_1,\ldots,oldsymbol{y}_t)\in (\mathbb{F}_q^m)^t$$
,

the Relaxed Inhomogeneous Permuted Kernel Problem r-IPKP<sub>q,m,n,t</sub> asks to find a permutation  $\pi \in S_n$  such that

$$oldsymbol{H}\piig[\sum_{i\in[1,t]}\kappa_ioldsymbol{x}_iig]=\sum_{i\in[1,t]}\kappa_ioldsymbol{y}_i$$

for some  $(\kappa_1, \ldots, \kappa_t) \in (\mathbb{F}_q)^t \setminus \{(0, \ldots, 0)\}.$ 

## Multi-dimensional IPKP

#### Definition (IPKP [LP11])

Let m < n and t be positive integers, Given

- $\boldsymbol{H} \in \mathbb{F}_q^{m \times n}$ ;
- $(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_t)\in (\mathbb{F}_q^n)^t;$
- $(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_t)\in (\mathbb{F}_q^m)^t$ ,

the Inhomogeneous Permuted Kernel Problem  $\mathsf{IPKP}_{q,m,n,t}$  asks to find a permutation  $\pi\in\mathcal{S}_n$  such that

$$\boldsymbol{H}\boldsymbol{\pi}[\boldsymbol{x}_i] = \boldsymbol{y}_i$$

for all  $i \in [1, t]$ .

## 1 Motivation

- 2 Attacks against mono-dimensional IPKP
- Our attack against r-IPKP
- 4 Attacks against multi-dimensional IPKP
- 5 Concrete security estimation of r-IPKP

## Outline



- 2 Attacks against mono-dimensional IPKP
- Our attack against r-IPKP
- 4 Attacks against multi-dimensional IPKP
- 5 Concrete security estimation of r-IPKP

 Motivation
 Mono-IPKP
 r-IPKP
 Multi-IPKP
 Concrete security

 MPC-in-the-Head
 MPC-in-the-Hea

Generic paradigm by Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS07, IKOS09].

 $\mathsf{MPC} \ \mathsf{protocol} \ \implies \ \mathsf{ZK}\text{-}\mathsf{proof}$ 

- Prover splits secret and commits to the states;
- 2 Verifier sends a random challenge  $\gamma$ ;
- Prover simulates locally ("in the head") all the parties, and commits to the views;
- Verifier chooses a random party i\* and asks to reveal all the views except i\*;
- Solution of the MPC protocol.

| 00000      | 0000000000              | 0000000            | 0000000    | 00000             |
|------------|-------------------------|--------------------|------------|-------------------|
| 000000     | 0000000000              | 0000000            | 0000000    | 00000             |
| Motivation | Mono-IPKP<br>0000000000 | r-IPKP<br>00000000 | Multi-IPKP | Concrete security |

| MPC-in-the-Head a | nd PKP |
|-------------------|--------|
|-------------------|--------|

| Name              | Туре                    | $\sigma$ size        |
|-------------------|-------------------------|----------------------|
| SUSHYFISH [Beu20] | 5-round with helper     | ${\sim}12~\text{kB}$ |
| [BG22]            | 5-round using structure | $\sim$ 9 kB          |
| [Fen22]           | 7-round                 | ${\sim}13~\text{kB}$ |

Table: Comparison of recent digital signature schemes based on  $\mathsf{PKP}$  assumptions



- PKP parameters  $(q, n, m) \Longrightarrow$  attacks on IPKP
- MPC parameters  $(N, \tau) \Longrightarrow$  KZ attack on 5-round protocols [KZ20]

KZ attack cost depends on the challenge space (the number of possibilities for  $\gamma$ ).

Increasing the challenge space leads to a decrease in  $\tau$ .

|                 | [BG22]           | our work         |
|-----------------|------------------|------------------|
| Challenge space | $\mathbb{F}_{q}$ | $\mathbb{F}_q^t$ |

| Motivation | Mono-IPKP  | r-IPKP   | Multi-IPKP | Concrete security |
|------------|------------|----------|------------|-------------------|
| 0000●0     | 0000000000 | 00000000 | 00000000   |                   |
| -          |            |          |            |                   |

| $\sim$ |      |            |
|--------|------|------------|
|        | l Ir | narametere |
| $\sim$ | 'ui  | Dalameters |
|        |      |            |

|                 |           | PK   | (P par | amet | ers | MPC p | aram. |         |               |
|-----------------|-----------|------|--------|------|-----|-------|-------|---------|---------------|
| Parameter Set   | $\lambda$ | q    | п      | т    | t   | Ν     | au    | pk size | $\sigma$ size |
| [BG22]-fast     | 128       | 997  | 61     | 38   | 1   | 32    | 42    | 0.15 kB | 9.90 kB       |
| [BG22]-short    | 128       | 997  | 61     | 38   | 1   | 256   | 31    | 0.24 kB | 8.81 kB       |
| PERK-I-fast3    | 128       | 1021 | 79     | 35   | 3   | 32    | 30    | 0.15 kB | 8.35 kB       |
| PERK-I-fast5    | 128       | 1021 | 83     | 36   | 5   | 32    | 28    | 0.24 kB | 8.03 kB       |
| PERK-I-short3   | 128       | 1021 | 79     | 35   | 3   | 256   | 20    | 0.15 kB | 6.56 kB       |
| PERK-I-short5   | 128       | 1021 | 83     | 36   | 5   | 256   | 18    | 0.24 kB | 6.06 kB       |
| PERK-III-fast3  | 192       | 1021 | 112    | 54   | 3   | 32    | 46    | 0.23 kB | 18.8 kB       |
| PERK-III-fast5  | 192       | 1021 | 116    | 55   | 5   | 32    | 43    | 0.37 kB | 18.0 kB       |
| PERK-III-short3 | 192       | 1021 | 112    | 54   | 3   | 256   | 31    | 0.23 kB | 15.0 kB       |
| PERK-III-short5 | 192       | 1021 | 116    | 55   | 5   | 256   | 28    | 0.37 kB | 13.8 kB       |
| PERK-V-fast3    | 256       | 1021 | 146    | 75   | 3   | 32    | 61    | 0.31 kB | 33.3 kB       |
| PERK-V-fast5    | 256       | 1021 | 150    | 76   | 5   | 32    | 57    | 0.51 kB | 31.7 kB       |
| PERK-V-short3   | 256       | 1021 | 146    | 75   | 3   | 256   | 41    | 0.31 kB | 26.4 kB       |
| PERK-V-short5   | 256       | 1021 | 150    | 76   | 5   | 256   | 37    | 0.51 kB | 24.2 kB       |

#### Table: Parameters of PERK signature scheme

| Motivatio | on N          | Mono-IPKP | r-IPKP<br>00000000 | Multi-IPKP | Concrete securi |
|-----------|---------------|-----------|--------------------|------------|-----------------|
| Perf      | ormance       | S         |                    |            |                 |
| -         | Parameter Se  | t Keva    | an                 | Sign       | Verify          |
| -         | Tarameter Se  | тсур      |                    | Sign       | Verny           |
|           | PERK-I-fast3  | 77        | (                  | 7.6 M      | 5.3 M           |
|           | PERK-I-fast5  | 88        | κ.                 | 7.2 M      | 5.1 M           |
|           | PERK-I-short  | :3 80 k   | (                  | 39 M       | 27 M            |
|           | PERK-I-short  | :5 92 k   | ζ.                 | 36 M       | 25 M            |
| -         | PERK-III-fast | :3 167    | k                  | 16 M       | 13 M            |
|           | PERK-III-fast | 184       | k                  | 15 M       | 12 M            |
|           | PERK-III-sho  | rt3 174   | k                  | 82 M       | 65 M            |
|           | PERK-III-sho  | rt5 194   | k                  | 77 M       | 60 M            |
| -         | PERK-V-fast   | 3 297     | k                  | 36 M       | 28 M            |
|           | PERK-V-fast   | 5 322     | k                  | 34 M       | 27 M            |
|           | PERK-V-shor   | rt3 299   | k                  | 184 M      | 142 M           |
| _         | PERK-V-shor   | rt5 329   | k                  | 170 M      | 131 M           |

Table: Performances of our implementation for different instances of PERK. The key generation numbers are in kilo CPU cycles, while the signing and verification numbers are in million CPU cycles.

## Outline

## Motivation

#### 2 Attacks against mono-dimensional IPKP

- Our attack against r-IPKP
- 4 Attacks against multi-dimensional IPKP
- 5 Concrete security estimation of r-IPKP

|            | с. I:       |          |            |                   |
|------------|-------------|----------|------------|-------------------|
| Motivation | Mono-IPKP   | r-IPKP   | Multi-IPKP | Concrete security |
| 000000     | o●ooooooooo | 00000000 | 00000000   |                   |

## Number of solutions

# PropositionThe average number of solutions for a random IPKP $_{q,m,n}$ instance is $\frac{n!}{q^m}$

Since all existing attacks on IPKP and variants are combinatorial, they benefit from a speedup equal to  $\max(1, \frac{n!}{q^m})$ .

 $\implies$  equivalent to Gilbert-Varshamov bound





$$oldsymbol{x}_1 = oldsymbol{y} - oldsymbol{H}'oldsymbol{x}_2$$

 $\Rightarrow$  enumerate  $x_2$  as every subpermutation of x of size n - m.



#### Proposition (Complexity)

$$\mathcal{T} = \mathcal{O}\left(\frac{n!}{(n-m)!}\right)$$

#### $\implies$ equivalent to Prange

$$\begin{pmatrix} x_1 \\ \hline \\ \hline \\ x_2 \end{pmatrix} = y$$

$$L_1 = \{ (\mathbf{x}_1, \mathbf{H}_1 \mathbf{x}_1) | \mathbf{x}_1 \in \mathbb{F}_q^{n/2} \text{ sub-permutation of } \mathbf{x} \}$$
$$L_2 = \{ (\mathbf{x}_2, \mathbf{y} - \mathbf{H}_2 \mathbf{x}_2) | \mathbf{x}_2 \in \mathbb{F}_q^{n/2} \text{ sub-permutation of } \mathbf{x} \}$$

$$L_1 \bowtie L_2 = \{(x_1, x_2) | \exists z, (x_1, z) \in L_1 \text{ and } (x_2, z) \in L_2\}$$

| Motivation | Mono-IPKP      | r-IPKP   | Multi-IPKP | Concrete security |
|------------|----------------|----------|------------|-------------------|
| 000000     | ०००००€०००००    | 00000000 | 00000000   | 00000             |
| Time-mer   | nory trade-off |          |            |                   |

#### Proposition (Complexity)

$$\mathcal{T} = \mathcal{O}\left(|L_1| + |L_2| + |L_1 \bowtie L_2|\right)$$
$$\mathcal{M} = \mathcal{O}\left(|L_1| + |L_2|\right)$$

with

$$|L_1| = |L_2| = \frac{n!}{(n/2)!}$$
  
 $|L_1 \bowtie L_2| = \frac{|L_1| \times |L_2|}{q^m}$ 

 $\implies$  equivalent to Birthday Decoding

| Motivation | Mono-IPKP  | r-IPKP   | Multi-IPKP | Concrete security |
|------------|------------|----------|------------|-------------------|
| 000000     | oooooooooo | 00000000 | 00000000   |                   |
|            |            |          |            |                   |







## KMP algorithm [KMP19]

Meet in the middle approach between Georgiades and TMTO



|            |               | o1       |            |                   |
|------------|---------------|----------|------------|-------------------|
| Motivation | Mono-IPKP     | r-IPKP   | Multi-IPKP | Concrete security |
| 000000     | 0000000000000 | 00000000 | 00000000   | 00000             |

## KMP algorithm [KMP19]

#### Proposition (Complexity)

$$\mathcal{T} = \mathcal{O}\left(|L_1| + |L_2| + |L_1 \bowtie L_2|\right)$$

with

$$|L_1| = |L_2| = \binom{n}{(n-m+u)/2} ((n-m+u)/2)!$$
$$|L_1 \bowtie L_2| = \frac{|L_1| \times |L_2|}{q^u}$$

| Motivation | Mono-IPKP   | r-IPKP   | Multi-IPKP | Concrete security |
|------------|-------------|----------|------------|-------------------|
| 000000     | ०००००००००●० | 00000000 | 00000000   |                   |
|            |             |          |            |                   |

#### Comparison



\*KMP/SBC cost estimation courtesy of https://github.com/Crypto-TII/CryptographicEstimators 21/43

| Motivation | Mono-IPKP     | r-IPKP   | Multi-IPKP | Concrete security |
|------------|---------------|----------|------------|-------------------|
| 000000     | 0000000000    | 00000000 | 00000000   |                   |
| Other at   | tacks on IPKP |          |            |                   |

- [BCCG93]
- [PC94]
- Joux-Jaulmes attack [JJ01]

## 1 Motivation

- 2 Attacks against mono-dimensional IPKP
- Our attack against r-IPKP
- 4 Attacks against multi-dimensional IPKP
- 5 Concrete security estimation of r-IPKP

## A variant of the Permuted Kernel Problem

#### Definition (r-IPKP)

Let m < n and t be positive integers, Given

•  $\boldsymbol{H} \in \mathbb{F}_{a}^{m \times n}$ ;

• 
$$(\pmb{x}_1,\ldots,\pmb{x}_t)\in (\mathbb{F}_q^n)^t;$$

• 
$$(oldsymbol{y}_1,\ldots,oldsymbol{y}_t)\in (\mathbb{F}_q^m)^t$$
,

the Relaxed Inhomogeneous Permuted Kernel Problem r-IPKP<sub>q,m,n,t</sub> asks to find a permutation  $\pi \in S_n$  such that

$$oldsymbol{H}\piig[\sum_{i\in[1,t]}\kappa_ioldsymbol{x}_iig]=\sum_{i\in[1,t]}\kappa_ioldsymbol{y}_i$$

for some  $(\kappa_1, \ldots, \kappa_t) \in (\mathbb{F}_q)^t \setminus \{(0, \ldots, 0)\}.$ 

| Motivation | Mono-IPKP  | r-IPKP   | Multi-IPKP | Concrete security |
|------------|------------|----------|------------|-------------------|
| 000000     | 0000000000 | ००●००००० | 00000000   |                   |
|            |            |          |            |                   |

#### Number of solutions

#### Proposition

The average number of solutions for a random r-IPKP<sub>q,m,n,t</sub> instance is

$$\frac{n!}{q^m} \cdot \frac{q^t - 1}{q - 1}$$



• Take the smallest weight vector  $\boldsymbol{x}$  in  $\langle \boldsymbol{x}_1, \ldots, \boldsymbol{x}_t \rangle$ ,

$$oldsymbol{x} = \sum_{i \in [t]} \kappa_i \cdot oldsymbol{x}_i$$

of weight w.

Define

$$\boldsymbol{y} = \sum_{i \in [t]} \kappa_i \cdot \boldsymbol{y}_i$$

and solve IPKP instance  $\boldsymbol{H}\pi[\boldsymbol{x}] = \boldsymbol{y}$ 

Adapt KMP algorithm to take advantage of the n - w zeros in x.

## KMP adaptation with zeros

$$\begin{pmatrix} \mathbf{x}_1 \\ \hline \mathbf{x}_2 \\ \hline \mathbf{x}_3 \end{pmatrix} \qquad \leftarrow n - w - z \text{ zeros}$$
$$\begin{pmatrix} \mathbf{x}_1 \\ \hline \mathbf{x}_2 \\ \hline \mathbf{x}_3 \end{pmatrix} \qquad \leftarrow z/2 \text{ zeros}$$
$$\begin{pmatrix} \mathbf{I}_{m-u} & \mathbf{H}' \\ \mathbf{0} & \mathbf{H}_2 & \mathbf{H}_3 \end{pmatrix} \qquad = \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix}$$

$$egin{aligned} & m{x}_1 = m{y}_1 - m{H}'(m{x}_2,m{x}_3) \ & m{H}_2m{x}_2 + m{H}_3m{x}_3 = m{y}_2 \end{aligned}$$

| Motivation | Mono-IPKP  | r-IPKP   | Multi-IPKP | Concrete security |
|------------|------------|----------|------------|-------------------|
| 000000     | 0000000000 | 00000●00 | 00000000   |                   |
| Our attack |            |          |            |                   |

#### Proposition (Complexity)

$$\mathcal{T} = \mathcal{O}\left(\mathcal{T}_{\textit{ISD}} + \left(|L_1| + |L_2| + |L_1 \bowtie L_2|\right)P\right)$$

with

$$k = (n - m + u)/2, z \le n - w$$
$$|L_1| = |L_2| = {\binom{k}{z/2}} {\binom{n-z}{k-z/2}} (k - z/2)!$$
$$|L_1 \bowtie L_2| = \frac{|L_1| \times |L_2|}{q^u}$$
$$P = \frac{{\binom{n}{n-w}}}{{\binom{n-2k}{n-w-z}} {\binom{k}{z/2}}^2}$$









#### Comparison with KMP for higher t



## Outline

## Motivation

- 2 Attacks against mono-dimensional IPKP
- Our attack against r-IPKP
- 4 Attacks against multi-dimensional IPKP
- 5 Concrete security estimation of r-IPKP

## Multi-dimensional IPKP

#### Definition (IPKP)

Let m < n and t be positive integers, Given

- $\boldsymbol{H} \in \mathbb{F}_q^{m \times n}$ ;
- $(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_t)\in (\mathbb{F}_q^n)^t;$

• 
$$(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_t)\in (\mathbb{F}_q^m)^t$$
,

the Inhomogeneous Permuted Kernel Problem  $\mathsf{IPKP}_{q,m,n,t}$  asks to find a permutation  $\pi\in\mathcal{S}_n$  such that

$$\boldsymbol{H}\boldsymbol{\pi}[\boldsymbol{x}_i] = \boldsymbol{y}_i$$

for all  $i \in [1, t]$ .

| Motivation | Mono-IPKP  | r-IPKP   | Multi-IPKP | Concrete security |
|------------|------------|----------|------------|-------------------|
| 000000     | 0000000000 | 00000000 | 00●00000   |                   |
| Number of  | solutions  |          |            |                   |

#### Proposition

The average number of solutions for a random  $\mathsf{IPKP}_{q,m,n,t}$  instance is  $\frac{n!}{q^{mt}}$ 

$$\frac{\mathsf{IPKP}_{q,m,n,1}}{\frac{n!}{q^m}} \begin{vmatrix} \mathsf{r} \cdot \mathsf{IPKP}_{q,m,n,t} \\ \frac{n!}{q^m} \cdot \frac{q^t - 1}{q - 1} \end{vmatrix} \frac{\mathsf{IPKP}_{q,m,n,t}}{\frac{n!}{q^{mt}}}$$

 Motivation
 Mono-IPKP
 r-IPKP
 Multi-IPKP
 Concrete security

 Why do we need to consider multi-dimensional IPKP?
 Concrete security
 Concrete security
 Concrete security

Normally with a random instance there is no solution for our parameters.

However, for the signature protocol there exists a permutation  $\pi$  that is a solution to multi-dimensional IPKP.

## Only the size of $L_1 \bowtie L_2$ changes.

#### Proposition (Complexity)

$$\mathcal{T} = \mathcal{O}\left(|L_1| + |L_2| + |L_1 \bowtie L_2|\right)$$

with

$$|L_1| = |L_2| = \binom{n}{(n-m+u)/2} ((n-m+u)/2)!$$
$$|L_1 \bowtie L_2| = \frac{|L_1| \times |L_2|}{q^{ut}}$$

 Motivation
 Mono-IPKP
 r-IPKP
 Multi-IPKP
 Concrete security

 SBC algorithm [SBC22]

KMP algorithm with ISD.



Definition (Permutation/Subcode Equivalence Problem (PEP/SEP))

Let  $k' \leq k \leq n$ . Given two codes C[n, k] and C'[n, k'], does there exists a permutation  $\pi$  such that

 $\pi[\mathcal{C}'] \subseteq \mathcal{C}?$ 

| IPKP      | Equivalent problem | Parameters        |
|-----------|--------------------|-------------------|
| t < n – m | SEP                | k=n-m, k'=t       |
| t = n - m | PEP                | k = k' = n - m    |
| t > n - m | SEP                | k = t, k' = n - m |

Table: Relations between PKP, SEP and PEP, and corresponding parameters

| Motivation | Mono-IPKP   | r-IPKP   | Multi-IPKP | Concrete security |
|------------|-------------|----------|------------|-------------------|
| 000000     | 00000000000 | 00000000 | 0000000●   |                   |
|            |             |          |            |                   |

#### Comparison



38 / 43

## Outline

## Motivation

- 2 Attacks against mono-dimensional IPKP
- Our attack against r-IPKP
- 4 Attacks against multi-dimensional IPKP
- 5 Concrete security estimation of r-IPKP



#### What happens with a different density?



40 / 43

| Motivation | Mono-IPKP  | r-IPKP   | Multi-IPKP | Concrete security |
|------------|------------|----------|------------|-------------------|
| 000000     | 0000000000 | 00000000 | 00000000   | 00●00             |
|            |            |          |            |                   |

## Mitigating both attacks



| Motivation | Mono-IPKP  | r-IPKP   | Multi-IPKP | Concrete security |
|------------|------------|----------|------------|-------------------|
| 000000     | 0000000000 | 00000000 | 00000000   | 00●00             |
|            |            |          |            |                   |





| Motivation | Mono-IPKP  | r-IPKP   | Multi-IPKP | Concrete security |
|------------|------------|----------|------------|-------------------|
| 000000     | 0000000000 | 00000000 | 00000000   | 00●00             |
|            |            |          |            |                   |





PERK was submitted to the NIST on-ramp call for digital signatures with the following augmented team:

Najwa Aaraj, Technology Innovation Institute, UAE Slim Bettaieb, Technology Innovation Institute, UAE Loïc Bidoux, Technology Innovation Institute, UAE Alessandro Budroni, Technology Innovation Institute, UAE Victor Dyseryn, XLIM, University of Limoges, France Andre Esser, Technology Innovation Institute, UAE Philippe Gaborit, XLIM, University of Limoges, France Mukul Kulkarni, Technology Innovation Institute, UAE Victor Mateu, Technology Innovation Institute, UAE Marco Palumbi, Technology Innovation Institute, UAE Lucas Perin, Technology Innovation Institute, UAE Jean-Pierre Tillich, INRIA, Paris, France

# Perspectives

- Combinatorial attacks
  - Refine our attack
  - Exploit the multiple instances directly in KMP?
- Algebraic attacks
  - Modelling of permutations in a PhD thesis [Sae17]
  - Polynomial attack when *mt* is sufficiently high (ongoing work)
  - No efficient attack derived so far in the typical regime
  - Work in progress

## Thank you for your attention !

## References I

 Thierry Baritaud, Mireille Campana, Pascal Chauvaud, and Henri Gilbert.
 On the security of the permuted kernel identification scheme.
 In Ernest F. Brickell, editor, <u>CRYPTO'92</u>, volume 740 of <u>LNCS</u>, pages 305–311. Springer, Heidelberg, August 1993.

#### Ward Beullens.

Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes.

In Anne Canteaut and Yuval Ishai, editors, <u>EUROCRYPT 2020,</u> <u>Part III</u>, volume 12107 of <u>LNCS</u>, pages 183–211. Springer, Heidelberg, May 2020.

## References II

#### Loïc Bidoux and Philippe Gaborit.

Compact post-quantum signatures from proofs of knowledge leveraging structure for the PKP, SD and RSD problems. In Codes, Cryptology and Information Security (C2SI), pages

10-42. Springer, 2022.

#### Thibauld Feneuil.

Building MPCitH-based signatures from MQ, MinRank, rank SD and PKP.

Cryptology ePrint Archive, Report 2022/1512, 2022. https://eprint.iacr.org/2022/1512.

#### Jean Georgiades.

Some remarks on the security of the identification scheme based on permuted kernels.

Journal of Cryptology, 5(2):133–137, January 1992.

## References III

- Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. In David S. Johnson and Uriel Feige, editors, <u>39th ACM STOC</u>, pages 21–30. ACM Press, June 2007.
- Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from secure multiparty computation. SIAM Journal on Computing, 39(3):1121–1152, 2009.
- Éliane Jaulmes and Antoine Joux.
   Cryptanalysis of PKP: A new approach.
   In Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS, pages 165–172. Springer, Heidelberg, February 2001.

## References IV

Eliane Koussa, Gilles Macario-Rat, and Jacques Patarin. On the complexity of the permuted kernel problem. Cryptology ePrint Archive, Report 2019/412, 2019. https://eprint.iacr.org/2019/412.

Daniel Kales and Greg Zaverucha.
 An attack on some signature schemes constructed from five-pass identification schemes.
 In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, CANS 20, volume 12579 of LNCS, pages 3–22. Springer, Heidelberg, December 2020.

Rodolphe Lampe and Jacques Patarin. Analysis of some natural variants of the pkp algorithm. Cryptology ePrint Archive, 2011.

## References V

Jacques Patarin and Pascal Chauvaud.
 Improved algorithms for the permuted kernel problem.
 In Douglas R. Stinson, editor, <u>CRYPTO'93</u>, volume 773 of LNCS, pages 391–402. Springer, Heidelberg, August 1994.

Mohamed Ahmed Saeed.
 Algebraic approach for code equivalence.
 PhD thesis, Normandie Université; University of Khartoum, 2017.

Paolo Santini, Marco Baldi, and Franco Chiaraluce. Computational hardness of the permuted kernel and subcode equivalence problems.

Cryptology ePrint Archive, Report 2022/1749, 2022. https://eprint.iacr.org/2022/1749.

## References VI



#### Adi Shamir.

An efficient identification scheme based on permuted kernels (extended abstract) (rump session).

In Gilles Brassard, editor, <u>CRYPTO'89</u>, volume 435 of <u>LNCS</u>, pages 606–609. Springer, Heidelberg, August 1990.