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Durandal signature scheme

Rank-based signature presented at EUROCRYPT’19 [ABG+19]

Adaptation of Schnorr-Lyubashevsky proof of knowledge, with
variations to avoid attacks

Fiat-Shamir heuristic to transform into a signature scheme

No equivalent found for Hamming metric

Based on problems : RSL, IRSD, PSSI

pk size σ size

Durandal-I 15.2KB 4.1KB

Durandal-II 18.6KB 5.0KB
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What has happened with Durandal since 2019 ?

Resistant to attacks since 2019

Better understanding of the RSL problem (algebraic attack in
2021 [BB21], combinatorial attack in 2022 [BBBG22])

PSSI reduction to MinRank (ongoing work)

New combinatorial attack on PSSI (ongoing work, breaks
existing parameters in ≈ 236 attempts)

Optimizations and size-performance tradeoffs
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Notation

Gr(d ,Fqm) is the set of subspaces of Fqm of Fq-dimension d .

x
$← X means that x is chosen uniformly at random in X

For E ,F subspaces of Fqm , the product space EF is defined as :

EF := VectFq{ef |e ∈ E , f ∈ F}

If (e1, ..., er ) and (f1, ..., fd) are basis of E and F , then
(ei fj)1≤i≤r ,1≤j≤d contains a basis of EF .
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PSSI problem

Definition (PSS sample)

Let E ⊂ Fqm a subspace of Fq-dimension r . A Product Space
Subspace (PSS) sample is a couple of subspaces (F ,Z ) defined as
follows :

F
$← Gr(d ,Fqm)

U
$← Gr(rd − λ,EF ) such that {ef |e ∈ E , f ∈ F} ∩ U = {0}

W
$← Gr(w ,Fqm)

Z = W + U
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PSSI problem

Definition (Random sample)

A random sample is a couple of subspaces (F ,Z ) with :

F
$← Gr(d ,Fqm)

Z
$← Gr(w + rd − λ,Fqm)

F and Z are independent
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PSSI problem

Definition (PSSI problem, from Durandal [ABG+19])

The Product Spaces Subspaces Indistinguishability (PSSI) problem
consists in deciding whether N samples (Fi ,Zi ) are PSS samples or
random samples.

Definition (Search-PSSI problem)

Given N PSS samples (Fi ,Zi ), the search-PSSI problem consists in
finding the vector space E of dimension r .
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What happens if λ = 0 ?

There is no filtration : (F ,Z ) = (F ,W + EF ).
Take (f1, ..., fd) a basis of F .

To find E in one sample, compute :

A =
d⋂

i=1

f −1
i Z

Similar arguments than LRPC decoding :

f −1
i Z = f −1

i f1E + ...+ E + ...+ f −1
i fdE + f −1

i W

= E + Ri
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Practical parameters for PSSI

m w r d λ

241 57 6 6 12
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Existing attack for PSSI

Choose A ⊂ F a subspace of dimension 2 and check whether

dim(AZ ) < 2(w + rd − λ)

Proposition ([ABG+19])

The advantage of the distinguisher is of the order of q(rd−λ)−m.

Several problems :

The distinguisher only uses one signature ;

It does not depend on w ;

It does not allow to recover the secret space E .
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Combining two instances
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A partial explanation
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Impossibility to avoid 2-sums

(for λ = 2r = 2d)
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Protection by m

Recall that

dimF = d

dimZ = w + rd − λ
so

dimF1Z2 + F2Z1 = 2d(w + rd − λ) > m

but we can take subspaces of F1 and F2 to remain below m !

m w r d λ w + rd − λ
241 57 6 6 12 81
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Refining the first observation
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Probability

Heuristic

Let (e1, e2)
$← E and U ⊂ EF filtered of dimension rd − λ.

Suppose λ = 2d , then

P(∃(f1, f2) ∈ F | e1f1 + e2f2 ∈ U) ≥ 1− 1

e

Heuristic

Let (f1, f2)
$← F and U ⊂ EF filtered of dimension rd − λ.

Suppose λ = 2r , then

P(∃(e1, e2) ∈ E | e1f1 + e2f2 ∈ U) ≥ 1− 1

e
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An attack with three signatures
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Recovering elements of E
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Combining signatures two by two
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Does it really work ?

We want the chain of intersections

A :=
f ′2Z1 + f ′1Z2∣∣∣∣f1 f ′1

f2 f ′2

∣∣∣∣
⋂ f ′3Z1 + f ′1Z3∣∣∣∣f1 f ′1

f3 f ′3

∣∣∣∣
⋂ f ′3Z2 + f ′2Z3∣∣∣∣f2 f ′2

f3 f ′3

∣∣∣∣
to be equal to {0}, in general.

All the subspaces fiZj + fjZi are of dimension 2(w + rd − λ).

m w r d λ 2(w + rd − λ)

241 57 6 6 12 162
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Probabilities on the intersection of two vector spaces

Heuristic

Let A and B be uniformly random and independent subspaces of
Fqm of dimension a and b, respectively.

If a + b < m, then P(dim(A ∩ B) > 0) ≈ qa+b−m ;

If a + b ≥ m, then the most probable outcome is
dim(A ∩ B) = a + b −m.
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Generalization to n intersections

Heuristic

For 1 ≤ i ≤ n, let Ai
$← Fqm be independent subspaces of fixed

dimension a.

If na < (n − 1)m, then P(dim(
⋂n

i=1 Ai ) > 0) ≈ qna−(n−1)m ;

If na ≥ (n − 1)m, then the most probable outcome is
dim(

⋂n
i=1 Ai ) = na− (n − 1)m ;

In our setting :

a = 162,m = 241, n = 3

na = 486, (n − 1)m = 482

Most probable outcome : dim(A) = 4

/
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Let’s refine again !

We consider four samples :

(F1,Z1), (F2,Z2), (F3,Z3), (F4,Z4)

and we draw matrices : 
f1 f ′1
f2 f ′2
f3 f ′3
f4 f ′4


with (f1, f

′
1) fixed.

Probability of success ≈ (1− 1/e)4q−6d ≈ 0.16q−6d

And now 6 vectors spaces to intersect !
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Probability of success of the attack

≈ 0.16q−6d

Increase λ ⇒ Impossible due to inexistence of solution
Decrease m ⇒ Impossible due to Singleton bound

Increase d ⇒ Very large parameters... (m ≥ 400)

Increase q !
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New parameters

q m k n w r d λ

2 241 101 202 57 6 6 12

pk size σ size MaxMinors [BBC+20] Our attack

15.2KB 4.1KB 98 56

↓
q m k n w r d λ

4 173 85 170 5 8 9 18

pk size σ size MaxMinors [BBC+20] Our attack

14.7KB 5.1KB 232 128

Keygen Signature Verification

5ms 350ms 2ms

1
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Two optimizations

1 Fast matrix inversion for signing

2 Size-performance tradeoff
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Spotting structure in a linear system

Idea

Exploit a block structure in a big linear system of size λn × λn.

Each block is of size k × k and can be inverted with Euclid’s
algorithm (with cost O(k log k)).

We then use Strassen algorithm :

Naive Ours

Cost O((λn)ω) O(λωn log n)

Keygen Signature Verification

5ms 350ms 2ms
40ms
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Size-performance tradeoff

A Durandal signature is composed of a tuple (z , c ,p). To verify,
compute

x = Hz> + S ′c> + Sp>

Idea

Send Supp(z) instead of z .

...but we also need to send some coordinates of x !
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Impact on parameters

q m k n w r d λ

4 173 85 170 5 8 9 18

Shorter size version
pk size σ size Signing time Verification time

14.7KB 5.1KB 40ms 2ms
2.6KB 1s 1s

Faster verification version
pk size σ size Signing time Verification time

14.7KB 5.1KB 40ms 2ms
4.3KB 1s
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Conclusion

Analysis of a less studied problem at the core of a competitive
signature scheme

New secure parameters remain attractive

Optimizations makes the scheme even more competitive
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Perspectives

Refine the analysis on the security of PSSI problem

Tweak to avoid the new attack on PSSI without penalizing the
parameters
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Thank you for your attention !
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Combining two instances

We simplify and assume w = 0.
We take two instances (F1,Z1), (F2,Z2).
We made the following observation :

Z1 is filtered in EF1

Z2 is filtered in EF2

but...

F1Z2 + F2Z1 is not filtered in E (F1F2) !
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A partial explanation

If there exists (e1, e2) ∈ E 2 such that

e1f1 + e2f
′

1 = z1 ∈ Z1

e1f2 + e2f
′

2 = z2 ∈ Z2

then
f ′1z2 + f ′2z1 = e1(f ′1f2 + f ′2f1)
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Impossibility to avoid 2-sums

Fqm

E

FEF

U
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Refining the first observation

By drawing randomly a matrix(
f1 f ′1
f2 f ′2

)
(f1, f

′
1)

$← F1, (f2, f
′

2)
$← F2

we get (roughly) q−4d chances of having a product element ef
(with e ∈ E , f ∈ F1F2) :

ef ∈ f ′1Z2 + f ′2Z1

We need :

A way to recover this element e ∈ E ;

A precise probability of recovering e
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The attack

We consider three samples :

(F1,Z1)

(F2,Z2)

(F3,Z3)

Let (f1, f
′

1)
$← F1. With probability greater than

(1− 1/e)3 ≈ 0, 25

there exists elements such that

e1f1 + e2f
′

1 = z1 ∈ Z1 (1)

e1f2 + e2f
′

2 = z2 ∈ Z2 (2)

e1f3 + e2f
′

3 = z3 ∈ Z3 (3)

40 / 40



Recovering elements of E

Suppose

(
f1 f ′1
f2 f ′2

)
invertible, we can recover e1 and e2 with

e1 =

∣∣∣∣z1 f ′1
z2 f ′2

∣∣∣∣∣∣∣∣f1 f ′1
f2 f ′2

∣∣∣∣ ∈
∣∣∣∣Z1 f ′1
Z2 f ′2

∣∣∣∣∣∣∣∣f1 f ′1
f2 f ′2

∣∣∣∣ =

∣∣∣∣f1 f ′1
f2 f ′2

∣∣∣∣−1

(f ′2Z1 + f ′1Z2)

Similarly,

e2 ∈
∣∣∣∣f1 f ′1
f2 f ′2

∣∣∣∣−1

(f2Z1 + f1Z2)
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Combining signatures two by two

Compute

A :=
f ′2Z1 + f ′1Z2∣∣∣∣f1 f ′1

f2 f ′2

∣∣∣∣
⋂ f ′3Z1 + f ′1Z3∣∣∣∣f1 f ′1

f3 f ′3

∣∣∣∣
⋂ f ′3Z2 + f ′2Z3∣∣∣∣f2 f ′2

f3 f ′3

∣∣∣∣
With great probability,

If we are in the case of equations (1), (2) and (3) then
A = Vect(e1)

Else, A = {0} and we retry with other random (f2, f
′

2 , f3, f
′

3).

Probability of success ≈ 0.25q−4d
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Signing process in Durandal

To produce a Durandal signature, we need to solve a system :

z = cS ′ + pS

with

p ∈ F 4k unknown

Supp(z) ⊂ U filtered subspace in EF of codimension λ

c depending on the message

S and S ′ the secret key
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Signing process in Durandal

It is shown to be equivalent to solving :

M


p11

...
pi`
...

plkd

 = b (4)

where M is the binary matrix

M = (πh(f`S ij))11≤i`≤lkd ,11≤hj≤λn (5)

(πh is the projector on the last λ coordinates of EF )
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Naive inversion

M is a large λn × λn binary matrix.

Cost : O((λn)ω)
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Spotting structure in M

M is composed of ideal blocks M`,h = πh(f`S)

M1,1

· · ·

· · ·

M1,λ

...
...M`,h

Md ,1

· · ·

· · ·
Md ,λ


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Spotting structure in M

Each block is of size k × k and can be inverted with Euclid’s
algorithm (with cost O(k log k)).

We then use Strassen algorithm :

Naive Ours

Cost O((λn)ω) O(λωn log n)

Keygen Signature Verification

5ms 350ms 5ms
40ms
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Variant scheme

Sign

y $← (W + EF )n

x = yH>

Verify

x = Hz> + S ′c> + Sp>

Sign

x̂ $← Fb
qm

Solve x̂ = yĤ
>

with
Supp(y) = W + EF
x = yH>

Verify

Solve
x̂ = Ĥz> + Ŝ

′
c> + Ŝp> with

Supp(z)
x = Hz> + S ′c> + Sp>
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′
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