Analysis of the security of the PSSI problem and applications and optimizations to Durandal signature scheme

Nicolas Aragon, Maxime Bros, Victor Dyseryn, Philippe Gaborit

XLIM, Université de Limoges, France
GT Codes-Crypto - November 21, 2022

Durandal signature scheme

- Rank-based signature presented at EUROCRYPT'19 [ABG $\left.{ }^{+} 19\right]$
- Adaptation of Schnorr-Lyubashevsky proof of knowledge, with variations to avoid attacks
- Fiat-Shamir heuristic to transform into a signature scheme
- No equivalent found for Hamming metric
- Based on problems : RSL, IRSD, PSSI

	pk size	σ size
Durandal-I	15.2 KB	4.1 KB
Durandal-II	18.6 KB	5.0 KB

What has happened with Durandal since 2019?

- Resistant to attacks since 2019
- Better understanding of the RSL problem (algebraic attack in 2021 [BB21], combinatorial attack in 2022 [BBBG22])
- PSSI reduction to MinRank (ongoing work)
- New combinatorial attack on PSSI (ongoing work, breaks existing parameters in $\approx 2^{36}$ attempts)
- Optimizations and size-performance tradeoffs

What has happened with Durandal since 2019 ?

- Resistant to attacks since 2019
- Better understanding of the RSL problem (algebraic attack in 2021 [BB21], combinatorial attack in 2022 [BBBG22])
- PSSI reduction to MinRank (ongoing work)
- New combinatorial attack on PSSI (ongoing work, breaks existing parameters in $\approx 2^{36}$ attempts)
- Optimizations and size-performance tradeoffs

Summary

(1) PSSI problem
(2) A first observation
(3) An attack against PSSI

4 Mitigation and new parameters
(5) Optimizations on Durandal
(6) Conclusion and perspectives

Summary

(1) PSSI problem
(2) A first observation
(3) An attack against PSSI

4 Mitigation and new parameters
(5) Optimizations on Durandal
(6) Conclusion and perspectives

Notation

- $\operatorname{Gr}\left(d, \mathbb{F}_{q^{m}}\right)$ is the set of subspaces of $\mathbb{F}_{q^{m}}$ of $\mathbb{F}_{q^{-}}$-dimension d.
- $x \stackrel{\$}{\leftarrow} X$ means that x is chosen uniformly at random in X
- For E, F subspaces of $\mathbb{F}_{q^{m}}$, the product space $E F$ is defined as :

$$
E F:=\operatorname{Vect}_{\mathbb{F}_{q}}\{e f \mid e \in E, f \in F\}
$$

If $\left(e_{1}, \ldots, e_{r}\right)$ and $\left(f_{1}, \ldots, f_{d}\right)$ are basis of E and F, then $\left(e_{i} f_{j}\right)_{1 \leq i \leq r, 1 \leq j \leq d}$ contains a basis of $E F$.

PSSI problem

Definition (PSS sample)

Let $E \subset \mathbb{F}_{q^{m}}$ a subspace of $\mathbb{F}_{q^{-}}$-dimension r. A Product Space Subspace (PSS) sample is a couple of subspaces (F, Z) defined as follows:

- $F \stackrel{\$}{\leftarrow} \operatorname{Gr}\left(d, \mathbb{F}_{q^{m}}\right)$
- $U \stackrel{\$}{\leftrightarrows} \mathbf{G r}(r d-\lambda, E F)$ such that $\{e f \mid e \in E, f \in F\} \cap U=\{0\}$
- $W \stackrel{\$}{\leftarrow} \mathbf{G r}\left(w, \mathbb{F}_{q^{m}}\right)$
- $Z=W+U$

PSSI problem

Definition (Random sample)

A random sample is a couple of subspaces (F, Z) with :

- $F \stackrel{\$}{\leftarrow} \mathbf{G r}\left(d, \mathbb{F}_{q^{m}}\right)$
- $Z \stackrel{\$}{\leftarrow} \mathbf{G r}\left(w+r d-\lambda, \mathbb{F}_{q^{m}}\right)$
- F and Z are independent

PSSI problem

Definition (PSSI problem, from Durandal [ABG+19])

The Product Spaces Subspaces Indistinguishability (PSSI) problem consists in deciding whether N samples (F_{i}, Z_{i}) are PSS samples or random samples.

Definition (Search-PSSI problem)

Given N PSS samples $\left(F_{i}, Z_{i}\right)$, the search-PSSI problem consists in finding the vector space E of dimension r.

What happens if $\lambda=0$?

There is no filtration : $(F, Z)=(F, W+E F)$. Take $\left(f_{1}, \ldots, f_{d}\right)$ a basis of F.

To find E in one sample, compute :

$$
A=\bigcap_{i=1}^{d} f_{i}^{-1} Z
$$

Similar arguments than LRPC decoding :

$$
\begin{aligned}
f_{i}^{-1} Z & =f_{i}^{-1} f_{1} E+\ldots+E+\ldots+f_{i}^{-1} f_{d} E+f_{i}^{-1} W \\
& =E+R_{i}
\end{aligned}
$$

Practical parameters for PSSI

m	w	r	d	λ
241	57	6	6	12

Existing attack for PSSI

Choose $A \subset F$ a subspace of dimension 2 and check whether

$$
\operatorname{dim}(A Z)<2(w+r d-\lambda)
$$

Proposition ([ABG $\left.{ }^{+} 19\right]$)

The advantage of the distinguisher is of the order of $q^{(r d-\lambda)-m}$.

Existing attack for PSSI

Choose $A \subset F$ a subspace of dimension 2 and check whether

$$
\operatorname{dim}(A Z)<2(w+r d-\lambda)
$$

Proposition ([ABG $\left.{ }^{+} 19\right]$)

The advantage of the distinguisher is of the order of $q^{(r d-\lambda)-m}$.
Several problems :

- The distinguisher only uses one signature;
- It does not depend on w;
- It does not allow to recover the secret space E.

Summary

(1) PSSI problem

(2) A first observation
(3) An attack against PSSI

4 Mitigation and new parameters
(5) Optimizations on Durandal
6) Conclusion and perspectives

Combining two instances

A partial explanation

Impossibility to avoid 2-sums

 (for $\lambda=2 r=2 d$)
Protection by m

Recall that

- $\operatorname{dim} F=d$
- $\operatorname{dim} Z=w+r d-\lambda$
so

$$
\operatorname{dim} F_{1} Z_{2}+F_{2} Z_{1}=2 d(w+r d-\lambda)>m
$$

but we can take subspaces of F_{1} and F_{2} to remain below m !

m	w	r	d	λ	$w+r d-\lambda$
241	57	6	6	12	81

Summary

(1) PSSI problem

(2) A first observation

3 An attack against PSSI

4 Mitigation and new parameters
(5) Optimizations on Durandal
6) Conclusion and perspectives

Refining the first observation

Probability

Heuristic

Let $\left(e_{1}, e_{2}\right) \stackrel{\$}{\leftarrow} E$ and $U \subset E F$ filtered of dimension $r d-\lambda$. Suppose $\lambda=2 d$, then

$$
\mathbb{P}\left(\exists\left(f_{1}, f_{2}\right) \in F \mid e_{1} f_{1}+e_{2} f_{2} \in U\right) \geq 1-\frac{1}{e}
$$

Heuristic

Let $\left(f_{1}, f_{2}\right) \stackrel{\$}{\leftarrow} F$ and $U \subset E F$ filtered of dimension $r d-\lambda$. Suppose $\lambda=2 r$, then

$$
\mathbb{P}\left(\exists\left(e_{1}, e_{2}\right) \in E \mid e_{1} f_{1}+e_{2} f_{2} \in U\right) \geq 1-\frac{1}{e}
$$

An attack with three signatures

Recovering elements of E

Combining signatures two by two

Does it really work?

We want the chain of intersections

$$
A:=\frac{f_{2}^{\prime} Z_{1}+f_{1}^{\prime} Z_{2}}{\left|\begin{array}{ll}
f_{1} & f_{1}^{\prime} \\
f_{2} & f_{2}^{\prime}
\end{array}\right|} \bigcap \frac{f_{3}^{\prime} Z_{1}+f_{1}^{\prime} Z_{3}}{\left|\begin{array}{ll}
f_{1} & f_{1}^{\prime} \\
f_{3} & f_{3}^{\prime}
\end{array}\right|} \bigcap \frac{f_{3}^{\prime} Z_{2}+f_{2}^{\prime} Z_{3}}{\left|\begin{array}{ll}
f_{2} & f_{2}^{\prime} \\
f_{3} & f_{3}^{\prime}
\end{array}\right|}
$$

to be equal to $\{0\}$, in general.

All the subspaces $f_{i} Z_{j}+f_{j} Z_{i}$ are of dimension $2(w+r d-\lambda)$.

m	w	r	d	λ	$2(w+r d-\lambda)$
241	57	6	6	12	162

Probabilities on the intersection of two vector spaces

Heuristic

Let A and B be uniformly random and independent subspaces of $\mathbb{F}_{q^{m}}$ of dimension a and b, respectively.

- If $a+b<m$, then $\mathbb{P}(\operatorname{dim}(A \cap B)>0) \approx q^{a+b-m}$;
- If $a+b \geq m$, then the most probable outcome is $\operatorname{dim}(A \cap B)=a+b-m$.

Generalization to n intersections

Heuristic

For $1 \leq i \leq n$, let $A_{i} \stackrel{\$}{\leftarrow}$ Fqm be independent subspaces of fixed dimension a.

- If $n a<(n-1) m$, then $\mathbb{P}\left(\operatorname{dim}\left(\bigcap_{i=1}^{n} A_{i}\right)>0\right) \approx q^{n a-(n-1) m}$;
- If $n a \geq(n-1) m$, then the most probable outcome is $\operatorname{dim}\left(\bigcap_{i=1}^{n} A_{i}\right)=n a-(n-1) m ;$

In our setting :

- $a=162, m=241, n=3$
- $n a=486,(n-1) m=482$

Most probable outcome : $\operatorname{dim}(A)=4$
\because

Let's refine again!

We consider four samples :

$$
\left(F_{1}, Z_{1}\right),\left(F_{2}, Z_{2}\right),\left(F_{3}, Z_{3}\right),\left(F_{4}, Z_{4}\right)
$$

and we draw matrices :

$$
\left(\begin{array}{ll}
f_{1} & f_{1}^{\prime} \\
f_{2} & f_{2}^{\prime} \\
f_{3} & f_{3}^{\prime} \\
f_{4} & f_{4}^{\prime}
\end{array}\right)
$$

with $\left(f_{1}, f_{1}^{\prime}\right)$ fixed.
Probability of success $\approx(1-1 / e)^{4} q^{-6 d} \approx 0.16 q^{-6 d}$
And now 6 vectors spaces to intersect!

Summary

(1) PSSI problem

(2) A first observation
(3) An attack against PSSI
(4) Mitigation and new parameters
(5) Optimizations on Durandal
(6) Conclusion and perspectives

Probability of success of the attack

$\approx 0.16 q^{-6 d}$

Increase $\lambda \Rightarrow$ Impossible due to inexistence of solution
Decrease $m \quad \Rightarrow \quad$ Impossible due to Singleton bound
Increase $d \Rightarrow$ Very large parameters... $(m \geq 400)$

Increase q!

New parameters

	9	m	k	n	w	r	d	λ	
	2	241	101	202	57	6	6	12	
pk size		σ size	MaxMinors [$\mathrm{BBC}^{+} 20$]					Our attack	
15.2KB		4.1KB	98						56

\downarrow

	q	m	k	n	w	r	d	λ
	4	173	85	170	5	8	9	18
pk size	σ size	MaxMinors $\left[\mathrm{BBC}^{+} 20\right]$					Our attack	
14.7 KB	5.1 KB	232				128		
					Keygen	Signature	Verification	
	5 ms	350 ms	2 ms					

Summary

(1) PSSI problem

(2) A first observation
(3) An attack against PSSI

4 Mitigation and new parameters
(5) Optimizations on Durandal
(6) Conclusion and perspectives

Two optimizations

(1) Fast matrix inversion for signing
© Size-performance tradeoff

Spotting structure in a linear system

Idea

Exploit a block structure in a big linear system of size $\lambda n \times \lambda n$.
Each block is of size $k \times k$ and can be inverted with Euclid's algorithm (with cost $O(k \log k)$).

We then use Strassen algorithm :

	Naive	Ours
Cost	$O\left((\lambda n)^{\omega}\right)$	$O\left(\lambda^{\omega} n \log n\right)$

Keygen	Signature	Verification
5 ms	350 ms 40 ms	2 ms

Size-performance tradeoff

A Durandal signature is composed of a tuple $(\boldsymbol{z}, \boldsymbol{c}, \boldsymbol{p})$. To verify, compute

$$
\boldsymbol{x}=\boldsymbol{H} \boldsymbol{z}^{\top}+\boldsymbol{S}^{\prime} \boldsymbol{c}^{\top}+\boldsymbol{S p}^{\top}
$$

Idea

Send Supp(z) instead of \boldsymbol{z}.
...but we also need to send some coordinates of \boldsymbol{x} !

Impact on parameters

q	m	k	n	w	r	d	λ
4	173	85	170	5	8	9	18

Shorter size version

pk size	σ size	Signing time	Verification time
14.7 KB	5.1 KB	40 ms	2 ms
	2.6 KB	1 s	1 s

Faster verification version

pk size	σ size	Signing time	Verification time
14.7 KB	5.1 KB	40 ms	2 ms
	4.3 KB	$\mathbf{1 s}$	

Summary

(1) PSSI problem

(2) A first observation
(3) An attack against PSSI

4 Mitigation and new parameters
(5) Optimizations on Durandal

6 Conclusion and perspectives

Conclusion

- Analysis of a less studied problem at the core of a competitive signature scheme
- New secure parameters remain attractive
- Optimizations makes the scheme even more competitive

Perspectives

- Refine the analysis on the security of PSSI problem
- Tweak to avoid the new attack on PSSI without penalizing the parameters

Thank you for your attention!

References I

囯 Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles Zémor.
Durandal : a rank metric based signature scheme.
In Advances in Cryptology - EUROCRYPT 2019-38th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, pages 728-758, 2019.

- Magali Bardet and Pierre Briaud.

An algebraic approach to the rank support learning problem.
In International Conference on Post-Quantum Cryptography, pages 442-462. Springer, 2021.

References II

BLoïc Bidoux, Pierre Briaud, Maxime Bros, and Philippe Gaborit. Rqc revisited and more cryptanalysis for rank-based cryptography.
arXiv preprint arXiv :2207.01410, 2022.

- Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel.
Improvements of algebraic attacks for solving the rank decoding and minrank problems.
In International Conference on the Theory and Application of
Cryptology and Information Security, pages 507-536. Springer, 2020.

Combining two instances

We simplify and assume $w=0$.
We take two instances $\left(F_{1}, Z_{1}\right),\left(F_{2}, Z_{2}\right)$.
We made the following observation :

- Z_{1} is filtered in $E F_{1}$
- Z_{2} is filtered in $E F_{2}$
- but...
- $F_{1} Z_{2}+F_{2} Z_{1}$ is not filtered in $E\left(F_{1} F_{2}\right)$!

A partial explanation

If there exists $\left(e_{1}, e_{2}\right) \in E^{2}$ such that

$$
\begin{aligned}
& e_{1} f_{1}+e_{2} f_{1}^{\prime}=z_{1} \in Z_{1} \\
& e_{1} f_{2}+e_{2} f_{2}^{\prime}=z_{2} \in Z_{2}
\end{aligned}
$$

then

$$
f_{1}^{\prime} z_{2}+f_{2}^{\prime} z_{1}=e_{1}\left(f_{1}^{\prime} f_{2}+f_{2}^{\prime} f_{1}\right)
$$

Impossibility to avoid 2-sums

Refining the first observation

By drawing randomly a matrix

$$
\left(\begin{array}{ll}
f_{1} & f_{1}^{\prime} \\
f_{2} & f_{2}^{\prime}
\end{array}\right) \quad\left(f_{1}, f_{1}^{\prime}\right) \stackrel{\$}{\leftarrow} F_{1},\left(f_{2}, f_{2}^{\prime}\right) \stackrel{\$}{\leftarrow} F_{2}
$$

we get (roughly) $q^{-4 d}$ chances of having a product element ef (with $e \in E, f \in F_{1} F_{2}$) :

$$
e f \in f_{1}^{\prime} Z_{2}+f_{2}^{\prime} Z_{1}
$$

Refining the first observation

By drawing randomly a matrix

$$
\left(\begin{array}{ll}
f_{1} & f_{1}^{\prime} \\
f_{2} & f_{2}^{\prime}
\end{array}\right) \quad\left(f_{1}, f_{1}^{\prime}\right) \stackrel{\$}{\leftarrow} F_{1},\left(f_{2}, f_{2}^{\prime}\right) \stackrel{\$}{\leftarrow} F_{2}
$$

we get (roughly) $q^{-4 d}$ chances of having a product element ef (with $e \in E, f \in F_{1} F_{2}$) :

$$
e f \in f_{1}^{\prime} Z_{2}+f_{2}^{\prime} Z_{1}
$$

We need :

- A way to recover this element $e \in E$;
- A precise probability of recovering e

The attack

We consider three samples :

$$
\begin{aligned}
& \left(F_{1}, Z_{1}\right) \\
& \left(F_{2}, Z_{2}\right) \\
& \left(F_{3}, Z_{3}\right)
\end{aligned}
$$

$$
(1-1 / e)^{3} \approx 0,25
$$

there exists elements such that

$$
\begin{align*}
& e_{1} f_{1}+e_{2} f_{1}^{\prime}=z_{1} \in Z_{1} \tag{1}\\
& e_{1} f_{2}+e_{2} f_{2}^{\prime}=z_{2} \in Z_{2} \tag{2}\\
& e_{1} f_{3}+e_{2} f_{3}^{\prime}=z_{3} \in Z_{3} \tag{3}
\end{align*}
$$

Recovering elements of E

Suppose $\left(\begin{array}{ll}f_{1} & f_{1}^{\prime} \\ f_{2} & f_{2}^{\prime}\end{array}\right)$ invertible, we can recover e_{1} and e_{2} with

$$
e_{1}=\frac{\left|\begin{array}{ll}
z_{1} & f_{1}^{\prime} \\
z_{2} & f_{2}^{\prime}
\end{array}\right|}{\left|\begin{array}{ll}
f_{1} & f_{1}^{\prime} \\
f_{2} & f_{2}^{\prime}
\end{array}\right|} \in \frac{\left|\begin{array}{cc}
z_{1} & f_{1}^{\prime} \\
Z_{2} & f_{2}^{\prime}
\end{array}\right|}{\left|\begin{array}{ll}
f_{1} & f_{1}^{\prime} \\
f_{2} & f_{2}^{\prime}
\end{array}\right|}=\left|\begin{array}{ll}
f_{1} & f_{1}^{\prime} \\
f_{2} & f_{2}^{\prime}
\end{array}\right|^{-1}\left(f_{2}^{\prime} Z_{1}+f_{1}^{\prime} Z_{2}\right)
$$

Similarly,

$$
e_{2} \in\left|\begin{array}{ll}
f_{1} & f_{1}^{\prime} \\
f_{2} & f_{2}^{\prime}
\end{array}\right|^{-1}\left(f_{2} Z_{1}+f_{1} Z_{2}\right)
$$

Combining signatures two by two

Compute

$$
A:=\frac{f_{2}^{\prime} Z_{1}+f_{1}^{\prime} Z_{2}}{\left|\begin{array}{ll}
f_{1} & f_{1}^{\prime} \\
f_{2} & f_{2}^{\prime}
\end{array}\right|} \bigcap \frac{f_{3}^{\prime} Z_{1}+f_{1}^{\prime} Z_{3}}{\left|\begin{array}{ll}
f_{1} & f_{1}^{\prime} \\
f_{3} & f_{3}^{\prime}
\end{array}\right|} \bigcap \frac{f_{3}^{\prime} Z_{2}+f_{2}^{\prime} Z_{3}}{\left|\begin{array}{ll}
f_{2} & f_{2}^{\prime} \\
f_{3} & f_{3}^{\prime}
\end{array}\right|}
$$

With great probability,

- If we are in the case of equations (1), (2) and (3) then $A=\operatorname{Vect}\left(e_{1}\right)$
- Else, $A=\{0\}$ and we retry with other random $\left(f_{2}, f_{2}^{\prime}, f_{3}, f_{3}^{\prime}\right)$.

Probability of success $\approx 0.25 q^{-4 d}$

Signing process in Durandal

To produce a Durandal signature, we need to solve a system :

$$
z=c S^{\prime}+p S
$$

with

- $\boldsymbol{p} \in F^{4 k}$ unknown
- $\operatorname{Supp}(z) \subset U$ filtered subspace in $E F$ of codimension λ
- c depending on the message
- \boldsymbol{S} and \boldsymbol{S}^{\prime} the secret key

Signing process in Durandal

It is shown to be equivalent to solving :

$$
\boldsymbol{M}\left(\begin{array}{c}
p_{11} \tag{4}\\
\vdots \\
p_{i \ell} \\
\vdots \\
p_{l k d}
\end{array}\right)=\boldsymbol{b}
$$

where \boldsymbol{M} is the binary matrix

$$
\begin{equation*}
\boldsymbol{M}=\left(\pi_{h}\left(f_{\ell} \boldsymbol{S}_{i j}\right)\right)_{11 \leq i \ell \leq l k d, 11 \leq h j \leq \lambda n} \tag{5}
\end{equation*}
$$

(π_{h} is the projector on the last λ coordinates of $E F$)

Naive inversion

\boldsymbol{M} is a large $\lambda n \times \lambda n$ binary matrix.

$$
\text { Cost : } O\left((\lambda n)^{\omega}\right)
$$

Spotting structure in M

\boldsymbol{M} is composed of ideal blocks $\boldsymbol{M}_{\ell, h}=\pi_{h}\left(f_{\ell} \boldsymbol{S}\right)$
$\left(\begin{array}{c|ccc|c}\boldsymbol{M}_{1,1} & & & & \boldsymbol{M}_{1, \lambda} \\ \hline & & \ldots & & \\ & \ldots & & \\ & \boldsymbol{M}_{\ell, h} & \vdots & \\ & & \ldots & & \\ & & & & \\ \hline \boldsymbol{M}_{d, 1} & & & & \boldsymbol{M}_{d, \lambda}\end{array}\right)$

Spotting structure in M

Each block is of size $k \times k$ and can be inverted with Euclid's algorithm (with cost $O(k \log k)$).

We then use Strassen algorithm :

	Naive	Ours
Cost	$O\left((\lambda n)^{\omega}\right)$	$O\left(\lambda^{\omega} n \log n\right)$

Keygen	Signature	Verification
5 ms	350 ms 40 ms	5 ms

Variant scheme

Sign

$$
\begin{aligned}
& \boldsymbol{y} \stackrel{\$}{\leftarrow}(W+E F)^{n} \\
& \boldsymbol{x}=\boldsymbol{y} \boldsymbol{H}^{\top}
\end{aligned}
$$

Verify

$$
\boldsymbol{x}=\boldsymbol{H} \boldsymbol{z}^{\top}+\boldsymbol{S}^{\prime} \boldsymbol{c}^{\top}+\boldsymbol{S} \boldsymbol{p}^{\top}
$$

Variant scheme

Sign

$$
\begin{aligned}
& \boldsymbol{y} \stackrel{\$}{\leftarrow}(W+E F)^{n} \\
& \boldsymbol{x}=\boldsymbol{y} \boldsymbol{H}^{\top}
\end{aligned}
$$

Verify
$\boldsymbol{x}=\boldsymbol{H} \boldsymbol{z}^{\top}+\boldsymbol{S}^{\prime} \boldsymbol{c}^{\top}+\boldsymbol{S} \boldsymbol{p}^{\top}$

Sign

$\hat{\boldsymbol{x}} \stackrel{\$ \mathbb{F}_{q^{m}}^{b}}{ }$
Solve $\hat{\boldsymbol{x}}=\boldsymbol{y} \hat{\boldsymbol{H}}^{\top}$ with
$\operatorname{Supp}(\boldsymbol{y})=W+E F$
$\boldsymbol{x}=\boldsymbol{y} \boldsymbol{H}^{\top}$

Verify

Solve
$\hat{\boldsymbol{x}}=\hat{\boldsymbol{H}} \boldsymbol{z}^{\top}+\hat{\boldsymbol{S}}^{\prime} \boldsymbol{c}^{\top}+\hat{\boldsymbol{S}} \boldsymbol{p}^{\top}$ with Supp (z)

$$
\boldsymbol{x}=\boldsymbol{H} \boldsymbol{z}^{\top}+\boldsymbol{S}^{\prime} \boldsymbol{c}^{\top}+\boldsymbol{S p}^{\top}
$$

