LRPC codes with multiple syndromes: near ideal-size KEMs without ideals

Carlos Aguilar-Melchor, Nicolas Aragon, Victor Dyseryn, Philippe Gaborit, Gilles Zémor

Monday, April 4, 2022

Plan

- 1 Background on rank metric and LRPC codes
- Presentation of LRPC-MS
- 3 Analysis of the decoding failure rate
- 4 Bonus : advances in LRPC implementations
- **5** Conclusion and perspectives

Summary

1 Background on rank metric and LRPC codes

- Presentation of LRPC-MS
- 3 Analysis of the decoding failure rate
- 4 Bonus : advances in LRPC implementations
- 5 Conclusion and perspectives

Rank metric codes

In rank metric, we consider \mathbb{F}_{q^m} -linear codes (\mathbb{F}_{q^m} is a field extension of \mathbb{F}_q of degree m).

Definition (Rank weight)

An element $\mathbf{x} = (x_1, ..., x_n) \in (\mathbb{F}_{q^m})^n$ can be unfold against an \mathbb{F}_q -basis of \mathbb{F}_{q^m} in a matrix

$$\mathcal{M}(\boldsymbol{x}) = \begin{pmatrix} x_{1,1} & \dots & x_{n,1} \\ \vdots & & \vdots \\ x_{1,m} & \dots & x_{n,m} \end{pmatrix} \in \mathcal{M}_{m,n}(\mathbb{F}_p)$$

The rank weight of x is defined as the rank of this matrix (which does not depend on the choice of the basis).

$$w_r(\mathbf{x}) = \text{Rank } \mathcal{M}(\mathbf{x}) \in [0, \min(m, n)]$$

Example

Let
$$\mathbb{F}_8 = \mathbb{F}_{2^3}$$
 and let α such that $\mathbb{F}_8 \simeq \mathbb{F}_2[\alpha] = Vect(1, \alpha, \alpha^2)$.

Example

$$\mathbf{x} = (1, \alpha, \alpha^2 + 1, \alpha + 1) \in \mathbb{F}_8^4$$

$$\mathcal{M}(\mathbf{x}) = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$w_r(\mathbf{x}) = 3$$

Support in rank metric

Definition (Rank support)

The support of a word $\mathbf{x} = (x_1, ..., x_n) \in (\mathbb{F}_{q^m})^n$ is the subspace of \mathbb{F}_{q^m} generated by its coordinates :

$$\operatorname{Supp}(\boldsymbol{x}) = \langle x_1, ..., x_n \rangle_{\mathbb{F}_q} \subset \mathbb{F}_{q^m}$$

Hamming metric : $w_h(\mathbf{x}) = |\operatorname{Supp}(\mathbf{x})|$ Rank metric : $w_r(\mathbf{x}) = dim(\operatorname{Supp}(\mathbf{x}))$

Ideal structure

To reduce the memory footprint of a generator matrix, we define ideal codes.

Definition (Double circulant code)

A double circulant code is a code C[2n, n] which admits a double circulating matrix as a generating matrix :

$$\boldsymbol{G} = \begin{pmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \ddots & a_{n-2} \\ \vdots & \ddots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_0 \\ \end{pmatrix} \begin{pmatrix} b_0 & b_1 & \dots & b_{n-1} \\ b_{n-1} & b_0 & \ddots & b_{n-2} \\ \vdots & \ddots & \ddots & \vdots \\ b_1 & b_2 & \dots & b_0 \end{pmatrix}$$

Ideal structure

Definition (Ideal matrix)

Let P(X) a polynomial in $\mathbb{F}_q[X]$ of degree *n*. A square matrix *M* of size $n \times n$ is ideal modulo *P* generated by f(X) when it is of the form :

$$\mathbf{M} = \begin{pmatrix} f(X) \mod P \\ Xf(X) \mod P \\ \vdots \\ X^{n-1}f(X) \mod P \end{pmatrix}$$

Definition (Ideal code)

An ideal code is a code C[2n, n] having $\boldsymbol{G} = (G_1|G_2)$ as a generator matrix where G_1 and G_2 are two ideal matrices.

Conclusion and perspectives

Difficult problems in rank metric

Definition (Rank Syndrome Decoding RSD(n, k, w))

Given a random parity check matrix $H \in \mathcal{M}_{n-k,n}(\mathbb{F}_q)$ and a syndrome s = He for e an error of rank weight w(e) = w, find e.

Difficult problems in rank metric

Definition (Rank Syndrome Decoding RSD(n, k, w))

Given a random parity check matrix $\boldsymbol{H} \in \mathcal{M}_{n-k,n}(\mathbb{F}_q)$ and a syndrome $\boldsymbol{s} = \boldsymbol{H}\boldsymbol{e}$ for \boldsymbol{e} an error of rank weight $w(\boldsymbol{e}) = w$, find \boldsymbol{e} .

Definition (Rank Support Learning $RSL(n, k, w, \ell)$)

Given a random parity check matrix $\boldsymbol{H} \in \mathcal{M}_{n-k,n}(\mathbb{F}_q)$ and ℓ syndromes $\boldsymbol{s}_i = \boldsymbol{H}\boldsymbol{e}_i$ for \boldsymbol{e}_i errors of same support E a subspace of dimension w, find E.

Difficult problems in rank metric

Definition (Ideal Rank Syndrome Decoding IRSD(n, k, w))

Given an ideal random parity check matrix $H \in \mathcal{M}_{n-k,n}(\mathbb{F}_q)$ and a syndrome s = He for e an error of rank weight w(e) = w, find e.

Problematic with the structure :

- Quantum attacks¹
- Potential weaknesses

^{1.} Ronald CRAMER, Léo DUCAS et Benjamin WESOLOWSKI. "Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time". In : *Journal of the ACM (JACM)* 68.2 (2021), p. 1–26.

Low Rank Parity Check Codes

An LRPC code is a code which admits a parity check matrix whose coordinates belong to a subspace of \mathbb{F}_{q^m} of small dimension.

Definition (LRPC codes)

Let $\boldsymbol{H} = (h_{ij})_{\substack{1 \leq i \leq n-k \\ 1 \leq j \leq n}} \in \mathbb{F}_{q^m}^{(n-k) \times n}$ be a full-rank matrix such that its coordinates generate an \mathbb{F}_q -subspace F of small dimension d:

$$F = \langle h_{ij} \rangle_{\mathbb{F}_q}.$$

Let C be the code with parity-check matrix H. By definition, C is an [n, k] LRPC code of dual weight d. Such a matrix H is called a homogeneous matrix of weight d and support F.

Example

Let us consider again the field $\mathbb{F}_8 = Vect(1, \alpha, \alpha^2)$

Example

$$\boldsymbol{H} = \begin{pmatrix} 1 & \alpha & \alpha \\ \alpha & 0 & \alpha + 1 \\ \alpha & \alpha & \alpha \end{pmatrix}$$

is of rank 3 as an \mathbb{F}_{q^m} -matrix but the \mathbb{F}_q -subspace generated by its coordinates is of dimension 2.

$$(1, \alpha, \alpha, \alpha, 0, \alpha + 1, \alpha, \alpha, \alpha) \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Problem

Let $E = \langle e_1, ..., e_r \rangle$ an (unknown) subspace of \mathbb{F}_{q^m} of dimension rand $F = \langle f_1, ..., f_d \rangle$ a (given) subspace of \mathbb{F}_{q^m} of dimension d. Given an LRPC matrix $\mathbf{H} \in F^{n-k \times n}$ and $\mathbf{s} = \mathbf{H}\mathbf{e}$ where $\mathbf{e} \in E^n$, find E.

Problem

Let $E = \langle e_1, ..., e_r \rangle$ an (unknown) subspace of \mathbb{F}_{q^m} of dimension rand $F = \langle f_1, ..., f_d \rangle$ a (given) subspace of \mathbb{F}_{q^m} of dimension d. Given an LRPC matrix $\mathbf{H} \in F^{n-k \times n}$ and $\mathbf{s} = \mathbf{H}\mathbf{e}$ where $\mathbf{e} \in E^n$, find E.

The coordinates of **s** belong to the product space $EF = Vect\{ef | e \in E, f \in F\} = \langle e_1 f_1, ..., e_r f_1, ..., e_1 f_d, ..., e_r f_d \rangle.$

Problem

Let $E = \langle e_1, ..., e_r \rangle$ an (unknown) subspace of \mathbb{F}_{q^m} of dimension rand $F = \langle f_1, ..., f_d \rangle$ a (given) subspace of \mathbb{F}_{q^m} of dimension d. Given an LRPC matrix $\mathbf{H} \in F^{n-k \times n}$ and $\mathbf{s} = \mathbf{H}\mathbf{e}$ where $\mathbf{e} \in E^n$, find E.

The coordinates of **s** belong to the product space $EF = Vect\{ef | e \in E, f \in F\} = \langle e_1 f_1, ..., e_r f_1, ..., e_1 f_d, ..., e_r f_d \rangle.$

The subspaces $f_i^{-1}EF$ all contain E since for example $f_1^{-1}EF = \langle e_1, ..., e_r, ..., f_1^{-1}e_1f_d, ..., f_1^{-1}e_rf_d \rangle$. So one can hope :

$$\bigcap_{i=1}^{d} f_i^{-1} EF = E$$

Algorithm 1: Rank Support Recovery (RSR) algorithm

Data: $F = \langle f_1, ..., f_d \rangle$ an \mathbb{F}_q -subspace of \mathbb{F}_{q^m} , $s = (s_1, \cdots, s_{n-k}) \in \mathbb{F}_{q^m}^{(n-k)}$ a syndrome of an error e of weight r and of support E **Result**: A candidate for the vector space E//Part 1: Compute the vector space EF1 Compute $S = \langle s_1, \cdots, s_{n-k} \rangle$ //Part 2: Recover the vector space E2 $E \leftarrow \bigcap_{i=1}^d f_i^{-1}S$ return E

Failure probability

Two possible cases of failure :

 S ⊊ EF, the coordinates of the syndrome do not generate the entire space EF, or

Failure probability

Two possible cases of failure :

- S ⊊ EF, the coordinates of the syndrome do not generate the entire space EF, or
- E ⊊ S₁ ∩ · · · ∩ S_d, the chain of intersection generates a subspace strictly bigger than E.

Failure probability

Two possible cases of failure :

- S ⊊ EF, the coordinates of the syndrome do not generate the entire space EF, or
- E ⊊ S₁ ∩ · · · ∩ S_d, the chain of intersection generates a subspace strictly bigger than E.

Proposition

The Decoding Failure Rate of algorithm RSR is bounded from above by :

$$q^{rd-(n-k)-1} + q^{-(d-1)(m-rd-r)}$$

Application of LRPC to cryptography

Definition (Key generation)

Let $\boldsymbol{U} = (\boldsymbol{A}|\boldsymbol{B})$ an LRPC matrix of weight d.

$$\left\{ egin{array}{ll} \mathsf{p}\mathsf{k} &= \mathbf{H} = (\mathbf{I}|\mathbf{A}^{-1}\mathbf{B}) \ \mathsf{s}\mathsf{k} &= \mathbf{U} \end{array}
ight.$$

Application of LRPC to cryptography

Definition (Key generation)

Let $\boldsymbol{U} = (\boldsymbol{A}|\boldsymbol{B})$ an LRPC matrix of weight d.

$$\left(egin{array}{ccc} pk &=& oldsymbol{H} = (oldsymbol{I}|oldsymbol{A}^{-1}oldsymbol{B})\ sk &=& oldsymbol{U} \end{array}
ight)$$

Definition (Encaps)

Choose an error support *E* of dimension *r*. Pick a random error *e* in E^n and send ciphertext c = He. The shared secret is Hash(E).

Application of LRPC to cryptography

Definition (Key generation)

Let $\boldsymbol{U} = (\boldsymbol{A}|\boldsymbol{B})$ an LRPC matrix of weight d.

$$\left\{ egin{array}{rcl} pk &=& oldsymbol{H} = (oldsymbol{I}|oldsymbol{A}^{-1}oldsymbol{B})\ sk &=& oldsymbol{U} \end{array}
ight.$$

Definition (Encaps)

Choose an error support *E* of dimension *r*. Pick a random error *e* in E^n and send ciphertext c = He. The shared secret is Hash(E).

Definition (Decaps)

Compute s = Ac = Ue and use LRPC decoding to find E.

ROLLO-II parameters

Instance	q	n	m	r	d	Security	DFR
ROLLO-II-128	2	189	83	7	8	128	2^{-134}
ROLLO-II-192	2	193	97	8	8	192	2^{-130}
ROLLO-II-256	2	211	97	8	9	256	2^{-136}

FIGURE: Parameters for ROLLO-II.

Instance	pk size	sk size	ct size	Security
ROLLO-II-128	1941	40	2089	128
ROLLO-II-192	2341	40	2469	192
ROLLO-II-256	2559	40	2687	256

FIGURE: Resulting sizes in bytes for ROLLO-II using NIST seed expander initialized with 40 bytes long seeds. The security is expressed in bits.

ROLLO-I parameters

Instance	q	n	m	r	d	Security	DFR
ROLLO-I-128	2	83	67	7	8	128	2 ⁻²⁸
ROLLO-I-192	2	97	79	8	8	192	2 ⁻³⁴
ROLLO-I-256	2	113	97	9	9	256	2^{-33}

FIGURE: Parameters for ROLLO-I.

Instance	pk size	sk size	ct size	Security
ROLLO-I-128	696	40	696	128
ROLLO-I-192	958	40	958	192
ROLLO-I-256	1371	40	1371	256

FIGURE: Resulting sizes in bytes for ROLLO-I using NIST seed expander initialized with 40 bytes long seeds. The security is expressed in bits.

Summary

- Background on rank metric and LRPC codes
- Presentation of LRPC-MS
- 3 Analysis of the decoding failure rate
- 4 Bonus : advances in LRPC implementations
- 5 Conclusion and perspectives

Idea

Definition (Key generation)

Let $\boldsymbol{U} = (\boldsymbol{A}|\boldsymbol{B})$ an LRPC matrix of weight d.

$$\begin{cases} pk = \boldsymbol{H} = (\boldsymbol{I}|\boldsymbol{A}^{-1}\boldsymbol{B}) \\ sk = \boldsymbol{U} \end{cases}$$

Definition (Encaps)

Choose an error support *E* of dimension *r*. Pick ℓ random errors e_i in E^n for $1 \le i \le \ell$ and send ciphertexts $c_i = He_i$. The shared secret is Hash(E).

Definition (Decaps)

Compute $s_i = Ac_i = Ue_i$ and use LRPC decoding with multiple syndromes to find E.

Conclusion and perspectives

LRPC decoding with multiple syndromes

The LRPC decoding algorithm has several syndromes as inputs $\boldsymbol{s}_i = \boldsymbol{U} \boldsymbol{e}_i.$

S = UV

LRPC decoding with multiple syndromes

Algorithm 2: Rank Support Recovery (RSR) algorithm with multiple syndromes

Data: $F = \langle f_1, ..., f_d \rangle$ an \mathbb{F}_q -subspace of \mathbb{F}_{q^m} , $S = (s_{ij}) \in \mathbb{F}_{q^m}^{(n-k) \times \ell}$ the ℓ syndromes of error vectors of weight r and support EResult: A candidate for the vector space E//Part 1: Compute the vector space EF1 Compute $S = \langle s_{11}, \cdots, s_{(n-k)\ell} \rangle$ //Part 2: Recover the vector space E2 $E \leftarrow \bigcap_{i=1}^d f_i^{-1}S$ 3 return E

New failure probability

Proposition

For $k \ge \ell$ and for **U** and **V** random variables chosen uniformly in $F^{(n-k)\times n}$ and $E^{n\times \ell}$ respectively, the Decoding Failure Rate of algorithm RSR(F, UV, r) is bounded from above by :

$$(n-k)q^{rd-(n-k)\ell} + q^{-(d-1)(m-rd-r)}$$

Parameters with an ideal structure

Instance	q	n	k	т	r	d	ℓ	Security	DFR
ILRPC-MS-128	2	94	47	83	7	8	4	128	2^{-126}
ILRPC-MS-192	2	134	67	101	8	8	4	192	2^{-198}

FIGURE: Parameters for ILRPC-MS

Instance	pk size	sk size	ct size	Security
ILRPC-MS-128	488	40	1,951	128
ILRPC-MS-192	846	40	3, 384	192

FIGURE: Resulting sizes in bytes for ILRPC-MS using NIST seed expander initialized with 40 bytes long seeds. The security is expressed in bits.

Parameters without an ideal structure

Instance	q	n	k	m	r	d	ℓ	Security	DFR
LRPC-MS-128	2	34	17	113	9	10	13	128	2^{-126}
LRPC-MS-192	2	42	21	139	10	11	15	192	2^{-190}

 $\ensuremath{\operatorname{Figure:}}$ Parameters for LRPC-MS

Instance	pk size	sk size	ct size	Security
LRPC-MS-128	4,083	40	3,122	128
LRPC-MS-192	7,663	40	5,474	192

FIGURE: Resulting sizes in bytes for LRPC-MS using NIST seed expander initialized with 40 bytes long seeds. The security is expressed in bits.

Conclusion and perspective

Comparison to other KEMs

Instance	128 bits	192 bits
LRPC-MS	7,205	12,445
Loong.CCAKEM-III	18,522	N/A
FrodoKEM	19,336	31,376
Loidreau cryptosystem	36,300	N/A
Classic McEliece	261,248	524,348

FIGURE: Comparison of sizes of unstructured post-quantum KEMs. The sizes represent the sum of public key and ciphertext expressed in bytes.

Instance	128 bits	192 bits
ILRPC-MS	2,439	4,230
BIKE	3,113	6,197
ROLLO-II	4,030	4,810
HQC	6,730	13,548

FIGURE: Comparison of sizes of structured code-based KEMs. The sizes represent the sum of public key and ciphertext expressed in bytes.

Specificity to rank metric

- Sending errors with the same support does not make sense in Hamming metric
- Additional information given by multiple syndromes can be specifically leveraged by LRPC decoding algorithm

IND-CPA proof

Definition (LRPC indistinguishability)

Given a matrix $\boldsymbol{H} \in \mathbb{F}_{q^m}^{(n-k) \times k}$, distinguish whether the code \mathcal{C} with the parity-check matrix $(\boldsymbol{I}_{n-k} | \boldsymbol{H})$ is a random code or an LRPC code of weight d.

Definition (Rank Support Learning $RSL(n, k, w, \ell)$)

Given a random parity check matrix $\boldsymbol{H} \in \mathcal{M}_{n-k,n}(\mathbb{F}_q)$ and ℓ syndromes $\boldsymbol{s}_i = \boldsymbol{H}\boldsymbol{e}_i$ for \boldsymbol{e}_i errors of same support E a subspace of dimension w, find E.

⇒ considered difficult as long as $\ell \le k(r-3)$ (without ideal structure) or $\ell \le r-3$ (with ideal structure).

Summary

- Background on rank metric and LRPC codes
- Presentation of LRPC-MS
- 3 Analysis of the decoding failure rate
- 4 Bonus : advances in LRPC implementations
- 5 Conclusion and perspectives

Objective

We fix *E* and *F* subspaces of \mathbb{F}_{q^m} of dimension *r* and *d* respectively such that *EF* is of dimension *rd*. We also impose q = 2.

Theorem

For $n_1 + n_2 \le n$ and for \boldsymbol{U} and \boldsymbol{V} random variables chosen uniformly in $F^{n_1 \times n}$ and $E^{n \times n_2}$ (respectively),

 $\mathbb{P}(\mathsf{Supp}(\boldsymbol{UV})
eq \mathsf{EF}) \leq \mathit{n_1}q^{\mathit{rd}-\mathit{n_1}\mathit{n_2}}$

Product of matrices

Impossible to use Leftover Hash Lemma

Lemma (Leftover Hash Lemma)

Let $\{\Phi_r\}_{r\in R}$ be a $(1 + \alpha)/m$ -almost universal family of hash functions from S to T, where m := |T|. Let H and X be independent random variables, where H is uniformly distributed over R, and X takes values in S. If β is the collision probability of X, and δ is the distance of $(H, \Phi_H(X))$ from uniform on $R \times T$, then $\delta \leq 1/2\sqrt{m\beta + \alpha}$.

 $oldsymbol{U} imesoldsymbol{V} \longrightarrow oldsymbol{U}oldsymbol{V}$ d^{n_1n} possibilities r^{n_2n} possibilities $\ll (rd)^{n_1n_2}$ possibilities

Main proof idea

We fix ϕ a linear form on *EF* and we study the probability to have $\phi(UV) = 0$.

Lemma

We denote \mathbf{v} a column vector in E^n . For a fixed \mathbf{U} , $\varphi_{\mathbf{U}} : \mathbf{v} \mapsto \phi(\mathbf{U}\mathbf{v})$ is a linear map from E^n to $\mathbb{F}_q^{n_1}$ so the distribution of $\phi(\mathbf{U}\mathbf{v})$ is uniform in $Im(\varphi_{\mathbf{U}}) \subset \mathbb{F}_q^{n_1}$.

We shall study the rank of φ_{U} . Indeed, when $\operatorname{Rank}(\varphi_{U}) = i$,

$$\mathbb{P}(\phi(oldsymbol{U}oldsymbol{v})=oldsymbol{0})=q^{-i}$$

Main proof idea

We fix ϕ a linear form on *EF* and we study the probability to have $\phi(UV) = 0$.

Lemma

We denote \mathbf{v} a column vector in E^n . For a fixed \mathbf{U} , $\varphi_{\mathbf{U}} : \mathbf{v} \mapsto \phi(\mathbf{U}\mathbf{v})$ is a linear map from E^n to $\mathbb{F}_q^{n_1}$ so the distribution of $\phi(\mathbf{U}\mathbf{v})$ is uniform in $Im(\varphi_{\mathbf{U}}) \subset \mathbb{F}_q^{n_1}$.

We shall study the rank of $\varphi_{\boldsymbol{U}}$. Indeed, when $\operatorname{Rank}(\varphi_{\boldsymbol{U}}) = i$,

$$\mathbb{P}(\phi(oldsymbol{U}oldsymbol{v})=oldsymbol{0})=q^{-i}$$

$$\mathbb{P}(\phi(\boldsymbol{U}\boldsymbol{V})=\boldsymbol{0})=q^{-in_2}$$

Defining basis

By duality, the linear form ϕ is associated to a vector τ in *EF* such that $\phi(x) = \langle \tau, x \rangle$. τ can be written :

$$\tau = \sum_{i=1}^{3} e_i f_i$$

where $(e_1, ..., e_s)$ and $(f_1, ..., f_s)$ are linearly independent elements in E and F. s is also called the tensor rank of τ .

These tuples can be completed to form basis $(e_1, ..., e_s, ..., e_r)$ and $(f_1, ..., f_s, ..., f_d)$.

Rank of $\varphi_{\boldsymbol{U}}$

We denote $\boldsymbol{U}_{ij}^{(k)}$ the coordinates of \boldsymbol{U}_{ij} in the basis we chose previously.

$$\varphi_{\boldsymbol{U}}((0,...,0,\overset{j,\text{th}}{e_{k}},0,...,0)) = \phi(\boldsymbol{U}(0,...,0,\overset{j,\text{th}}{e_{k}},0,...,0)) \\ = (\phi(e_{k}\boldsymbol{U}_{ij}))_{1 \leq i \leq n_{1}} \\ = (\langle \tau, \sum \boldsymbol{U}_{ij}^{(l)}e_{k}f_{l} \rangle)_{1 \leq i \leq n_{1}} \\ = \begin{cases} (\boldsymbol{U}_{ij}^{(k)})_{1 \leq i \leq n_{1}} & k \leq s \\ \boldsymbol{0} & k > s \end{cases}$$

Rank of $\varphi_{\boldsymbol{U}}$

So the matrix of $\varphi_{\pmb{U}}$ looks like

where each * is an independent uniform random variable.

End of the proof

The rank $\varphi_{\boldsymbol{U}}$ thus follows the law of a random variable R_s .

$$\mathbb{P}(\operatorname{Supp}(\boldsymbol{U}\boldsymbol{V}) \subset \operatorname{ker}(\phi_{\tau})) = \sum_{i=0}^{n_{1}} \mathbb{P}(\operatorname{Supp}(\boldsymbol{U}\boldsymbol{V}) \subset \operatorname{ker}(\phi_{\tau}) | \operatorname{Rank}(\varphi_{\boldsymbol{U}}) = i)$$
$$\mathbb{P}(\operatorname{Rank}(\varphi_{\boldsymbol{U}}) = i)$$
$$= \sum_{i=0}^{n_{1}} q^{-in_{2}} \mathbb{P}(\operatorname{Rank}(\varphi_{\boldsymbol{U}}) = i)$$
$$= \sum_{i=0}^{n_{1}} q^{-in_{2}} \mathbb{P}(R_{s} = i)$$
$$= \mathbb{E}(q^{-n_{2}R_{s}})$$
$$\leq n_{1}q^{-n_{1}n_{2}}$$

Summary

- Background on rank metric and LRPC codes
- Presentation of LRPC-MS
- 3 Analysis of the decoding failure rate
- 4 Bonus : advances in LRPC implementations
- 5 Conclusion and perspectives

Implementations

- Efficient
- Easy to use
- Isochronous (or constant-time) \Rightarrow no conditional branching on a secret expression

Background on rank metric Present

Long computations in LRPC codes cryptography

Definition (Key generation)

Let U = (A|B) an LRPC matrix of weight d.

$$\begin{cases} pk = H = (I|A^{-1}B) \\ sk = U \end{cases}$$

Long computations in LRPC codes cryptography

Definition (Key generation)

Let U = (x|y) an ideal LRPC matrix of weight d.

$$\begin{cases} pk = H = (I|x^{-1}y) \\ sk = U \end{cases}$$

Inversion in the field $\mathbb{K} := \frac{\mathbb{F}_{2^m}[X]}{(P)} \approx \mathbb{F}_{(2^m)^n}$ *P* is an irreducible polynomial of degree *n* with coefficients in \mathbb{F}_{2^m} .

Natural inversion algorithm

Find u, v such that ux + vP = 1.

i	quotient q _i	remainder r _i	u _i	Vi
0		Р	1	0
1		X	0	1
i	r_{i-2}/r_{i-1}	$r_{i-2} - q_i r_{i-1}$	$u_{i-2} - q_i u_{i-1}$	$v_{i-2} - q_i v_{i-1}$
k	q_k	r _k	U _k	Vk
k+1	q_{k+1}	0		

TABLE: Extended Euclidean algorithm

 \Rightarrow can lead to cache attacks

A naive approach

Use Euclidean algorithm with naive isochronous techniques.

- Set the number of iterations to a constant.
- Make euclidean divisions isochronous \Rightarrow slow and difficult to implement.

Itoh-Tsuiji algorithm

Idea² : compute $x^{-1} = (x^r)^{-1} x^{r-1}$ where :

$$r = 1 + 2^m + 2^{2m} + \dots + 2^{(n-1)m} = \frac{2^{mn} - 1}{2^m - 1}$$

It is easy to prove that $x^r \in \mathbb{F}_{2^m}$.

This reduces the inversion in $\mathbb{F}_{(2^m)^n}$ to :

- The computation of x^{r-1} and x^r , which can easily be made isochronous;
- An inversion in the smaller field \mathbb{F}_{2^m} ;
- *n* multiplications in \mathbb{F}_{2^m} .

^{2.} Toshiya ITOH et Shigeo TSUJII. "A fast algorithm for computing multiplicative inverses in GF (2m) using normal bases". In : Information and computation 78.3 (1988), p. 171–177.

Switching to normal basis

Usually, an element $x \in \mathbb{K} = \mathbb{F}_{(2^m)^n}$ is represented in the power basis $\{1, X, ..., X^{n-1}\}$:

$$x = x_0 + x_1 X + \dots + x_{n-1} X^{n-1}$$

with $x_i \in \mathbb{F}_{2^m}$. But it can be more practical to use a normal basis :

$$x = x_0 \alpha + x_1 \alpha^{2^m} + \dots + x_{n-1} \alpha^{2^{(n-1)m}}$$

where α is chosen such that $(\alpha, \alpha^{2^m}, \alpha^{2^{2m}}, ..., \alpha^{2^{(n-1)m}})$ is a basis of \mathbb{K} seen as a \mathbb{F}_{2^m} -vector space.

Characteristics of a normal basis

- Easy to perform operation $x \mapsto x^{2^m}$
- Multiplication : very expensive

$$\begin{aligned} \mathbf{x} \cdot \mathbf{y} &= \left(\sum_{i} x_{i} \alpha^{2^{im}}\right) \cdot \left(\sum_{j} y_{j} \alpha^{2^{jm}}\right) \\ &= \sum_{i,j} x_{i} y_{j} \alpha^{2^{im} + 2^{jm}} \\ &= \sum_{i,j,k} x_{i} y_{j} t_{i,j,k} \alpha^{2^{ik}} \end{aligned}$$

Except if you find an optimal normal basis

Optimal normal basis

Definition (Optimal normal basis)

A optimal normal basis is a basis $(\alpha, \alpha^{2^m}, \alpha^{2^{2m}}, ..., \alpha^{2^{(n-1)m}})$ such that for all *i*, $\alpha \alpha^{2^{im}} = \alpha^{2^{a_im}} + \alpha^{2^{b_im}}$

Scheme	п	ONB?
ROLLO-I-128	83	✓
ROLLO-I-192	97	X
ROLLO-I-256	113	1
ROLLO-II-128	189	1
ROLLO-II-192	193	X
ROLLO-II-256	211	X

TABLE: Existence of an optimal normal basis depending on the value n for each ROLLO set of parameters

Smarter square and multiply

$$r-1 = 2^m + 2^{2m} + \dots + 2^{(n-1)m}$$

Square & Multiply $\Rightarrow n - 1$ multiplications. We find a way to do log(n).

$$r-1 = 2^m \left(\sum_{i=1}^{\log(n-1)} (2^{m2^i} - 1) 2^{m(t \mod 2^i)} \right)$$

Performance results

	ROLLO-I-128	ROLLO-I-256	ROLLO-II-128	
Non-isochronous algorithm ¹	1,030,500	1,702,620	4,295,704	
	ROLLO-I-128	ROLLO-I-256	ROLLO-II-128	
lsochronous algorithm ²	11,204,649			
lsochronous algorithm (our work ³)	3,514,016	5,785,700	22,859,614	

TABLE: Duration of the key generation in CPU cycles

1. Nicolas ARAGON et al. Rank-Based Cryptography Library. URL : https: //rbc-lib.org/.

2. Carlos AGUILAR-MELCHOR et al. "Constant time algorithms for ROLLO-I-128". In : *SN Computer Science* 2.5 (2021), p. 1–19.

3. Carlos AGUILAR-MELCHOR et al. "Fast and Secure Key Generation for Low Rank Parity Check Codes Cryptosystems". In : 2021 IEEE International Symposium on Information Theory (ISIT). IEEE. 2021, p. 1260–1265.

Further refinement of our work

	ROLLO-I-128	ROLLO-I-256	ROLLO-II-128	
Non-isochronous	1 030 500	1 702 620	4,295,704	
algorithm	1,000,000	1,102,020		

	ROLLO-I-128	ROLLO-I-256	ROLLO-II-128
lsochronous algorithm	11,204,649		
lsochronous algorithm (our work)	3,514,016	5,785,700	22,859,614
lsochronous algorithm ¹	851,823	1,477,519	4,663,096

TABLE: Duration of the key generation in CPU cycles

^{1.} Tung CHOU et Jin-Han LIOU. "A Constant-time AVX2 Implementation of a Variant of ROLLO". In : IACR Transactions on Cryptographic Hardware and Embedded Systems (2022), p. 152–174.

State of the art implementation of ROLLO

Table 4: Cycle counts for key generation, encapsulation, and decapsulation of the ROLLO-I implementations from $[AMAB^+21]$ (the paper did not implement ROLLO-II), our ROLLO⁺ implementation, and the BIKE implementation from [CCK21].

instance	key gen.	encap.	decap	level	reference
ROLLO-I-128	11034623	984432	9775241	1	$[AMAB^+21]$
	11204649	320835	9744693		
ROLLO ⁺ -I-128	851823	30361	673666	1	
ROLLO ⁺ -I-192	980860	38748	878398	3	this paper
ROLLO ⁺ -I-256	1477519	55353	1635966	5	
ROLLO ⁺ -II-128	4663096	70621	876533	1	
ROLLO ⁺ -II-192	4058419	94138	1060271	3	this paper
ROLLO ⁺ -II-256	4947630	90021	1497315	5	
bikel1	589625	114256	1643551	1	[CCK91]
bikel3	1668511	267644	5128078	3	[001121]

Summary

- Background on rank metric and LRPC codes
- Presentation of LRPC-MS
- 3 Analysis of the decoding failure rate
- 4 Bonus : advances in LRPC implementations
- 5 Conclusion and perspectives

Conclusion

- New rank metric based cryptosystem with competitive parameters and no ideal structure
- Probabilistic result on the support of the product of two random matrices
- $\bullet\,$ Additional idea to make m down by 10 $\%\,$
- The approach can generalize to RQC but is less efficient in that case

Thank you for your attention !

ANNEX

An explicit method to build an optimal normal basis of 𝔽_{(2^m)ⁿ} over 𝔽_{2^m}.

Theorem

Let n be an integer prime to m and such that 2n + 1 is a prime and assume that either :

- **1** 2 is primitive in \mathbb{Z}_{2n+1} , or
- 2 $n + 1 = 3 \pmod{4}$ and 2 generates the quadratic residues in \mathbb{Z}_{2n+1} .

Then $\alpha = \gamma + \gamma^{-1}$ generates an optimal normal basis of \mathbb{K} over \mathbb{F}_{2^m} , where γ is a primitive (2n + 1)-th root of unity.