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Background on rank metric
Rank metric codes

In rank metric, we consider Fgm-linear codes (IFgm is a field
extension of Fg of degree m).

Definition (Rank weight)

An element x = (xi, ..., Xp) € (Fgm)"” can be unfold against an
[F4-basis of Fgm in a matrix

X11 ... Xpi
M(x) = : : € M n(Fp)

X1,m --- Xnm

The rank weight of x is defined as the rank of this matrix (which
does not depend on the choice of the basis).

w,(x) = Rank M(x) € [0, min(m, n)]




Background on rank metric
Example

Let Fg = Fs and let « such that Fg ~ Fs[a] = Vect(1, o, o?).

x=(l,0,0®+1,a+1) €F}

M(x) =

O O =
O = O
=
O =




Background on rank metric

Support in rank metric

Definition (Rank support)

The support of a word x = (x1, ..., Xp) € (Fgm)" is the subspace of
Fgm generated by its coordinates :

Supp(x) = (x1, ..., Xn)F, C Fgm

Hamming metric : wh(x) = | Supp(x)|
Rank metric : w,(x) = dim(Supp(x))



Background on rank metric

Ideal structure

To reduce the memory footprint of a generator matrix, we define
ideal codes.

Definition (Double circulant code)

A double circulant code is a code C[2n, n] which admits a double
circulating matrix as a generating matrix :
ao dl ... adp-1 bo b1 b,,,l

G_ | @1 . ap2| b1 b - b2

al a» ... a0 b1 b2 bo




Background on rank metric
|deal structure

Definition (ldeal matrix)

Let P(X) a polynomial in F4[X] of degree n. A square matrix M of
size n x n is ideal modulo P generated by 7(X) when it is of the

form :
f(X) mod P
Xf(X) mod P
M = )

X"71£(X) mod P

Definition (ldeal code)

An ideal code is a code C[2n, n] having G = (G1|G2) as a generator
matrix where G; and G> are two ideal matrices.




Background on rank metric

Difficult problems in rank metric

Definition (Rank Syndrome Decoding RSD(n, k, w))

Given a random parity check matrix H € M,_ ,(F4) and a
syndrome s = He for e an error of rank weight w(e) = w, find e.




Background on rank metric

Difficult problems in rank metric

Definition (Rank Syndrome Decoding RSD(n, k, w))

Given a random parity check matrix H € M,_ ,(F4) and a
syndrome s = He for e an error of rank weight w(e) = w, find e.

Definition (Rank Support Learning RSL(n, k, w, £))

Given a random parity check matrix H € M, ,(Fq) and ¢
syndromes s; = He; for e; errors of same support E a subspace of
dimension w, find E.

4




Background on rank metric

Difficult problems in rank metric

Definition (ldeal Rank Syndrome Decoding IRSD(n, k, w))

Given an ideal random parity check matrix H € M,,_ ,(Fq) and a
syndrome s = He for e an error of rank weight w(e) = w, find e.

Problematic with the structure :
@ Quantum attacks?!

@ Potential weaknesses

1. Ronald CRAMER, Léo DucAs et Benjamin WESOLOWSKI. “Mildly short
vectors in cyclotomic ideal lattices in quantum polynomial time". In : Journal of
the ACM (JACM) 68.2 (2021), p. 1-26.



Background on rank metric

Low Rank Parity Check Codes

An LRPC code is a code which admits a parity check matrix whose
coordinates belong to a subspace of Fgym of small dimension.

Definition (LRPC codes)

Let H = (hjj)i<i<n—k € Fg’fn_k)xn be a full-rank matrix such that its
1<j<n
coordinates generate an Fg-subspace F of small dimension d :

F = (hij)F,-

Let C be the code with parity-check matrix H. By definition, C is an
[n, k] LRPC code of dual weight d. Such a matrix H is called a
homogeneous matrix of weight d and support F.




Background on rank metric
Example

Let us consider again the field Fg = Vect(1, a, a?)

1 «o «
H=|a 0 a+1
o o o

is of rank 3 as an [Fgm-matrix but the [F,-subspace generated by its
coordinates is of dimension 2.

1 00 001O0O0O
(1,,0,0,0, 04+ 1,0,0,0)— [0 1 1 1 0 1 1 1 1
0 00 0OO0OOOTG OO O




Background on rank metric
LRPC decoding

Let E = (e1, ..., e;) an (unknown) subspace of Fqm of dimension r
and F = (f1, ..., fg) a (given) subspace of Fm of dimension d.
Given an LRPC matrix H € F"~k*" and s = He where e € E",
find E.




Background on rank metric
LRPC decoding

Let E = (e1, ..., e;) an (unknown) subspace of Fqm of dimension r
and F = (f1, ..., fg) a (given) subspace of Fm of dimension d.
Given an LRPC matrix H € F"~k*" and s = He where e € E",
find E.

The coordinates of s belong to the product space
EF = Vect{efle € E,f € F} = (e1f1, ..., e f1, ..., €1fq, ..., erfq).



Background on rank metric
LRPC decoding

Let E = (e1, ..., e;) an (unknown) subspace of Fqm of dimension r
and F = (f1, ..., fg) a (given) subspace of Fm of dimension d.
Given an LRPC matrix H € F"~k*" and s = He where e € E",
find E.

The coordinates of s belong to the product space
EF = Vect{efle € E,f € F} = (e1f1, ..., e f1, ..., €1fq, ..., erfq).

The subspaces f,-_lEF all contain E since for example

FTEEF = (€1, .0y €y ey ] R€1fay oy iy Lerfy).
So one can hope :

d
(f'EF=E
i=1



Background on rank metric

LRPC decoding

Algorithm 1: Rank Support Recovery (RSR) algorithm

Data: F = (fi, ..., f4) an Fg-subspace of Fgm,
s=(s1,-,Sn—k) € Fgﬁq_k) a syndrome of an error e of
weight r and of support E
Result: A candidate for the vector space E
//Part 1: Compute the vector space EF
1 Compute S = (s1,- - ,Sp—k)
//Part 2: Recover the vector space E
2 E+ N9, f S return E




Background on rank metric

Failure probability

Two possible cases of failure :

@ S C EF, the coordinates of the syndrome do not generate the
entire space EF, or
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@ S C EF, the coordinates of the syndrome do not generate the
entire space EF, or
@ EC 51N ---N Sy, the chain of intersection generates a
subspace strictly bigger than E.



Background on rank metric

Failure probability

Two possible cases of failure :

@ S C EF, the coordinates of the syndrome do not generate the
entire space EF, or

@ EC 51N ---N Sy, the chain of intersection generates a
subspace strictly bigger than E.

Proposition

The Decoding Failure Rate of algorithm RSR is bounded from

above by :

qrd—(n—k)—l + q—(d—l)(m—rd—r)




Application of LRPC to cryptography

Definition (Key generation)
Let U = (A|B) an LRPC matrix of weight d.

pk = H=(I|A'B)
sk = U




Application of LRPC to cryptography

Definition (Key generation)
Let U = (A|B) an LRPC matrix of weight d.

pk = H=(I|A'B)
sk = U

Definition (Encaps)

Choose an error support E of dimension r. Pick a random error e in
E"™ and send ciphertext ¢ = He. The shared secret is Hash(E).




Application of LRPC to cryptography

Definition (Key generation)
Let U = (A|B) an LRPC matrix of weight d.

pk = H=(I|A'B)
sk = U

Definition (Encaps)

Choose an error support E of dimension r. Pick a random error e in
E"™ and send ciphertext ¢ = He. The shared secret is Hash(E).

Definition (Decaps)

Compute s = Ac = Ue and use LRPC decoding to find E.




Background on rank metric
ROLLO-II parameters

Instance qg| n m | r | d | Security | DFR
ROLLO-1I-128 [ 2 [ 189 [ 83 [ 7 | 8 128 2-134
ROLLO-II-192 | 2 | 193 |97 | 8 | 8 192 2—130
ROLLO-1I-256 | 2 [ 211 [ 97 [ 8] 9 256 2—136
F1GURE: Parameters for ROLLO-II.
Instance pk size | sk size | ct size | Security

ROLLO-II-128 | 1941 40 2089 128
ROLLO-II-192 | 2341 40 2469 192
ROLLO-1I-256 | 2559 40 2687 256

FIGURE: Resulting sizes in bytes for ROLLO-II using NIST seed expander
initialized with 40 bytes long seeds. The security is expressed in bits.



Background on rank metric
ROLLO-I parameters

Instance qg| n | m|r|d]| Security | DFR
ROLLO-1-128 [ 2 | 83 |67 [ 7| 8 128 2-28
ROLLO-I-192 [ 2 | 97 [ 79 |8 | 8 192 2-3
ROLLO-1-256 | 2 [ 113 [ 97 |9 ] 9 256 | 2733
FIGURE: Parameters for ROLLO-I.
Instance pk size | sk size | ct size | Security
ROLLO-I-128 696 40 696 128
ROLLO-I-192 058 40 958 192
ROLLO-I-256 | 1371 40 1371 256

FIGURE: Resulting sizes in bytes for ROLLO-I using NIST seed expander
initialized with 40 bytes long seeds. The security is expressed in bits.
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Presentation of LRPC-MS

Idea

Definition (Key generation)
Let U = (A|B) an LRPC matrix of weight d.

pk = H=(I|A"'B)
sk = U

Definition (Encaps)

Choose an error support E of dimension r. Pick £ random errors e;
in E" for 1 < i < ¢ and send ciphertexts ¢; = He;. The shared
secret is Hash(E).

Definition (Decaps)
Compute s; = Ac; = Ue; and use LRPC decoding with multiple
syndromes to find E.




Presentation of LRPC-MS
LRPC decoding with multiple syndromes

The LRPC decoding algorithm has several syndromes as inputs
S = Ue,-.

S=Uv



Presentation of LRPC-MS

LRPC decoding with multiple syndromes

Algorithm 2: Rank Support Recovery (RSR) algorithm with multiple
syndromes

Data: F = (fi,...,fy) an Fg-subspace of Fgm, § = (s;;) € IF'gr'n_k)XZ
the ¢ syndromes of error vectors of weight r and support E
Result: A candidate for the vector space E
//Part 1: Compute the vector space EF
1 Compute S = (s11," ", S(n—k)t)
//Part 2: Recover the vector space E
2 E + ﬂf’zl f1s
3 return E




Presentation of LRPC-MS
New failure probability

Proposition

For k > ¢ and for U and V random variables chosen uniformly in
F(n=K)xn and En<! respectively, the Decoding Failure Rate of
algorithm RSR(F, UV, r) is bounded from above by :

(n _ k)qrdf(nfk)é + qf(dfl)(mfrdfr)




Presentation of LRPC-MS

Parameters with an ideal structure

Instance n k| m|r Security | DFR
ILRPC-MS-128 94 |47 ] 83 | 7 4 128 2-126
ILRPC-MS-192 | 2 | 134 | 67 | 101 | 8| 8 | 4 192 2-198

N|Q
oo Q
~

FIGURE: Parameters for ILRPC-MS

Instance pk size | sk size | ct size | Security
ILRPC-MS-128 | 488 40 1,951 128
ILRPC-MS-192 846 40 3,384 192

FIGURE: Resulting sizes in bytes for ILRPC-MS using NIST seed expander
initialized with 40 bytes long seeds. The security is expressed in bits.



Presentation of LRPC-MS
Parameters without an ideal structure

Instance qgl| n| k m r | d | ¢ | Security | DFR
LRPC-MS-128 | 2 | 34 | 17 | 113 | 9 |10 ] 13 128 2-126
LRPC-MS-192 | 2 | 42 | 21

139 |10 [ 11 ] 15 192 [ 27190
FIGURE: Parameters for LRPC-MS

Instance pk size | sk size
LRPC-MS-128 | 4,083

LRPC-MS-192 | 7,663

ct size | Security
40 3,122 128

40 5,474 192

FIGURE: Resulting sizes in bytes for LRPC-MS using NIST seed expander
initialized with 40 bytes long seeds. The security is expressed in bits.




Presentation of LRPC-MS

Comparison to other KEMs

Instance 128 bits | 192 bits
LRPC-MS 7,205 12,445
Loong. CCAKEM-III 18,522 N/A
FrodoKEM 19,336 31,376
Loidreau cryptosystem | 36,300 N/A
Classic McEliece 261,248 | 524,348

F1GURE: Comparison of sizes of unstructured post-quantum KEMs. The
sizes represent the sum of public key and ciphertext expressed in bytes.

Instance 128 bits | 192 bits
ILRPC-MS | 2,439 4,230
BIKE 3,113 6,197
ROLLO-II 4,030 4,810
HQC 6,730 13,548

FicurEe: Comparison of sizes of structured code-based KEMs. The sizes
represent the sum of public key and ciphertext expressed in bytes.



Presentation of LRPC-MS

Specificity to rank metric

@ Sending errors with the same support does not make sense in
Hamming metric

@ Additional information given by multiple syndromes can be
specifically leveraged by LRPC decoding algorithm



Presentation of LRPC-MS
IND-CPA proof

Definition (LRPC indistinguishability)

Given a matrix H € ]Fgr,'n_k)Xk, distinguish whether the code C with

the parity-check matrix (/,_x|H) is a random code or an LRPC
code of weight d.

Definition (Rank Support Learning RSL(n, k, w, {))

Given a random parity check matrix H € M,_ ,(Fq) and ¢
syndromes s; = He; for e; errors of same support E a subspace of
dimension w, find E.

<

= considered difficult as long as ¢ < k(r — 3) (without ideal
structure) or £ < r — 3 (with ideal structure).



Decoding failure rate

Summary

© Analysis of the decoding failure rate



Decoding failure rate
Objective

We fix E and F subspaces of Fgm of dimension r and d respectively
such that EF is of dimension rd. We also impose g = 2.

For ni + ny < n and for U and V random variables chosen
uniformly in F™*" and E"™*™ (respectively),

P(Supp(UV) # EF) < nyg'd—mm




Decoding failure rate

Product of matrices

"4
* * * *
u uv




Decoding failure rate
Impossible to use Leftover Hash Lemma

Lemma (Leftover Hash Lemma)

Let {®,},er be a (1 + a)/m-almost universal family of hash
functions from S to T , where m := |T|. Let H and X be
independent random variables, where H is uniformly distributed over
R, and X takes values in S. If § is the collision probability of X,
and ¢ is the distance of (H, ®y(X)) from uniform on R x T, then

§ <1/2y/mB+ a.

Ux vV — uv

d™possibilities r"™"possibilities < (rd)™™possibilities



Decoding failure rate
Main proof idea

We fix ¢ a linear form on EF and we study the probability to have
»(UV) =0.

We denote v a column vector in E".
For a fixed U, py : v = ¢(Uv) is a linear map from E" to Ft so
the distribution of ¢(Uv) is uniform in Im(¢y) C Fgt.

We shall study the rank of .
Indeed, when Rank(py) =i,

B(¢(Uv) =0) = g



Decoding failure rate
Main proof idea

We fix ¢ a linear form on EF and we study the probability to have
»(UV) =0.

We denote v a column vector in E".
For a fixed U, py : v = ¢(Uv) is a linear map from E" to Ft so
the distribution of ¢(Uv) is uniform in Im(¢y) C Fgt.

We shall study the rank of .
Indeed, when Rank(py) =i,

B(¢(Uv) =0) = g

P(p(UV)=0)=q ™



Decoding failure rate

Defining basis

By duality, the linear form ¢ is associated to a vector 7 in EF such
that ¢(x) = (7, x).
T can be written :

S
T = E eif;
P

where (e1, ..., &) and (f1, ..., fs) are linearly independent elements in
E and F. s is also called the tensor rank of 7.

These tuples can be completed to form basis (ey, ..., €, ..., &) and
(A, ey foy ey fg).



Decoding failure rate
Rank of ¢y

We denote U,(-jk) the coordinates of Uj; in the basis we chose
previously.

Jj-th j-th

0u((0,...,0, €, 0,...,0)) = $(U(0, ..., 0, & 0, ..., 0))
(¢(ex



Decoding failure rate

Rank of ¢y

So the matrix of ¢y looks like

ns n(d —s)
0 0
0 0
ny
0 0
0 0

where each * is an independent uniform

random variable.




Decoding failure rate
End of the proof

The rank @y thus follows the law of a random variable Rs.

m

P(Supp(UV) C ker(¢-)) = > P(Supp(UV) C ker(¢,)| Rank(py) = i)
i=0

P(Rank(py) =)

ny
=" g ™P(Rank(pu) = i)
i=0

n
= > a ™B(R: =)
i=0

~B(g ")

—nin2

< nmgq



Bonus

Summary

@ Bonus : advances in LRPC implementations



Bonus

Implementations

o Efficient
e Easy to use

@ Isochronous (or constant-time) = no conditional branching on
a secret expression



Long computations in LRPC codes cryptography

Definition (Key generation)

Let U = (A|B) an LRPC matrix of weight d.

pk = H=(l|A"'B)
sk U




Long computations in LRPC codes cryptography

Definition (Key generation)

Let U = (x|y) an ideal LRPC matrix of weight d.

pk = H=(I|x""y)
sk = U

Inversion in the field K := F2m [X]/(P) ~ F(amyn
P is an irreducible polynomial of degree n with coefficients in Fom.



Natural inversion algorithm

Find u, v such that ux + vP = 1.

Bonus

] quotient g; | remainder r; u; Vi

0 P 1 0

1 X 0 1

i fi—o/ri—1 | fica — Qifi—1 | Ui—2 — Qilli—1 | Vi—2 — QjVj—1

k Ak Ik Uk Vk
k+1 Gk+1 0

TABLE: Extended Euclidean algorithm

= can lead to cache attacks




Bonus

A naive approach

Use Euclidean algorithm with naive isochronous techniques.

@ Set the number of iterations to a constant.

@ Make euclidean divisions isochronous = slow and difficult to
implement.



Bonus

ltoh-Tsuiji algorithm

Idea? : compute x71 = (x")71 x ! where :

Fo1qomyom oy yolnm 2771
2m —1

It is easy to prove that x" € Fom.

This reduces the inversion in F(amyn to :

@ The computation of x"~! and x", which can easily be made
isochronous;;

@ An inversion in the smaller field Fom ;

o n multiplications in Fom.

2. Toshiya ITOH et Shigeo T'suiir. “A fast algorithm for computing multiplica-

tive inverses in GF (2m) using normal bases". In : Information and computation
78.3 (1988), p. 171-177.



Bonus

Switching to normal basis

Usually, an element x € K = F(omn is represented in the power
basis {1, X, ..., X""1} :

x=x0+x1X 4+ ..+ xp_1 XL

with x; € Fom.
But it can be more practical to use a normal basis :
om 2(n—1)m
X = Xpo + X1&° + ...+ Xp_1(0

. 2 —1
where o is chosen such that (a, a?”, %", " )m)

K seen as a Fom-vector space.

is a basis of



Bonus

Characteristics of a normal basis

o Easy to perform operation x — x%"

e Multiplication : very expensive
X-y= (ina2lm) ) (ZyjaZm)
i J
ij

2fk
= E XiYjtij ke
ij,k

Except if you find an optimal normal basis



Bonus
Optimal normal basis

Definition (Optimal normal basis)

o .. . m 2m n—1)m
A optimal normal basis is a basis (v, a®”, a2 ,...,az( ) ) such
o im a;m bim
that for all i, aa?” = ?" + o?
’ Scheme ‘ n ‘ ONB? ‘

ROLLO-I-128 | 83
ROLLO-I-192 | 97
ROLLO-1-256 | 113
ROLLO-II-128 | 189
ROLLO-II-192 | 193
ROLLO-II-256 | 211

IR IR RN IAN

TABLE: Existence of an optimal normal basis depending on the value n for
each ROLLO set of parameters



Bonus
Smarter square and multiply

r—1=2m422m 4 4 on=m
Square & Multiply = n — 1 multiplications.
We find a way to do log(n).

log(n—1) ‘ .
Fr—1=29m Z (2m2’ _ 1) 2m(t mod 2')
i=1



Bonus

Performance results

ROLLO-I-128 | ROLLO-I-256 | ROLLO-II-128
Non-isochronous |4 13 54 1,702,620 4,295,704
algorithm
ROLLO-I-128 | ROLLO-I-256 | ROLLO-II-128
Isochronous
lgorithm? 11,204,649
Isochronous
algorithm (our 3,514,016 5,785,700 22,859,614
work 3)

TABLE: Duration of the key generation in CPU cycles

1. Nicolas ARAGON et al. Rank-Based Cryptography Library. URL : https:
//rbc-lib.org/.

2. Carlos AGUILAR-MELCHOR et al. “Constant time algorithms for ROLLO-I-
128". In : SN Computer Science 2.5 (2021), p. 1-19.

3. Carlos AGUILAR-MELCHOR et al. “Fast and Secure Key Generation for
Low Rank Parity Check Codes Cryptosystems”. |n : 2021 |IEEE International
Symposium on Information Theory (ISIT). IEEE. 2021, p. 1260-1265.


https://rbc-lib.org/
https://rbc-lib.org/

Bonus

Further refinement of our work

ROLLO-I-128 | ROLLO-I-256 | ROLLO-II-128
Non-isochronous |4 13 54 1,702,620 4,295,704
algorithm
ROLLO-I-128 | ROLLO-I-256 | ROLLO-II-128
Isochr9nous 11.204.649
algorithm
Isochronous
algorithm (our 3,514,016 5,785,700 22,859,614
work)
Isochronous 851,823 1,477,519 4,663,006
algorithm

TABLE: Duration of the key generation in CPU cycles

1. Tung CHOU et Jin-Han Liou. “A Constant-time AVX2 Implementation of
a Variant of ROLLO”. In : JACR Transactions on Cryptographic Hardware and
Embedded Systems (2022), p. 152-174.



Bonus

State of the art implementation of ROLLO

Table 4: Cycle counts for key generation, encapsulation, and decapsulation of the ROLLO-I
implementations from [AMAB*21] (the paper did not implement ROLLO-II), our ROLLO*
implementation, and the BIKE implementation from [CCK21].

instance key gen. | encap. decap | level reference
11034623 | 984432 | 9775241 N
ROLLO-M128 114649 | 320835 | ovadeos | | | AMAB™21
ROLLO*-I-128 851823 | 30361 | 673666 1
ROLLOT-I-192 980860 | 38748 | 878398 3 this paper
ROLLOT-I-256 1477519 | 55353 | 1635966 5
ROLLO'-II-128 | 4663096 | 70621 | 876533 1
ROLLOT-TI-192 | 4058419 | 94138 | 1060271 3 this paper
ROLLOT-II-256 | 4947630 | 90021 | 1497315 5
bJ:.kell 589625 | 114256 | 1643551 1 [CCK21]
bikel3 1668511 | 267644 | 5128078 3
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© Conclusion and perspectives



Conclusion and perspectives

Conclusion

@ New rank metric based cryptosystem with competitive
parameters and no ideal structure

@ Probabilistic result on the support of the product of two
random matrices

o Additional idea to make m down by 10 %

@ The approach can generalize to RQC but is less efficient in that
case



Thank you for your attention !



Conclusion and perspectives

@ An explicit method to build an optimal normal basis of F(amyn
over [Fom.

Theorem

Let n be an integer prime to m and such that 2n+ 1 is a prime and
assume that either :

Q 2 is primitive in Zon+1, OF

@ 2n+1=3 (mod 4) and 2 generates the quadratic residues in
Zont1-

Then oo = v + vy~ generates an optimal normal basis of K over
Fom, where 7y is a primitive (2n + 1)-th root of unity.
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