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Rank metric codes

In rank metric, we consider Fqm -linear codes (Fqm is a field
extension of Fq of degree m).

Definition (Rank weight)

An element x = (x1, ..., xn) ∈ (Fqm)n can be unfold against an
Fq-basis of Fqm in a matrix

M(x) =

x1,1 . . . xn,1
...

...
x1,m . . . xn,m

 ∈Mm,n(Fp)

The rank weight of x is defined as the rank of this matrix (which
does not depend on the choice of the basis).

wr (x) = Rank M(x) ∈ [0,min(m, n)]
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Example

Let F8 = F23 and let α such that F8 ' F2[α] = Vect(1, α, α2).

Example

x = (1, α, α2 + 1, α + 1) ∈ F48

M(x) =

1 0 1 1
0 1 0 1
0 0 1 0



wr (x) = 3



Background on rank metric Presentation of LRPC-MS Decoding failure rate Bonus Conclusion and perspectives

Support in rank metric

Definition (Rank support)

The support of a word x = (x1, ..., xn) ∈ (Fqm)n is the subspace of
Fqm generated by its coordinates :

Supp(x) = 〈x1, ..., xn〉Fq ⊂ Fqm

Hamming metric : wh(x) = | Supp(x)|
Rank metric : wr (x) = dim(Supp(x))
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Ideal structure

To reduce the memory footprint of a generator matrix, we define
ideal codes.

Definition (Double circulant code)

A double circulant code is a code C[2n, n] which admits a double
circulating matrix as a generating matrix :

G =


a0 a1 . . . an−1 b0 b1 . . . bn−1

an−1 a0
. . . an−2 bn−1 b0

. . . bn−2
...

. . .
. . .

...
...

. . .
. . .

...
a1 a2 . . . a0 b1 b2 . . . b0
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Ideal structure

Definition (Ideal matrix)

Let P(X ) a polynomial in Fq[X ] of degree n. A square matrix M of
size n × n is ideal modulo P generated by f (X ) when it is of the
form :

M =


f (X ) mod P
Xf (X ) mod P

...
X n−1f (X ) mod P

 .

Definition (Ideal code)

An ideal code is a code C[2n, n] having G = (G1|G2) as a generator
matrix where G1 and G2 are two ideal matrices.
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Difficult problems in rank metric

Definition (Rank Syndrome Decoding RSD(n, k ,w))

Given a random parity check matrix H ∈Mn−k,n(Fq) and a
syndrome s = He for e an error of rank weight w(e) = w , find e.

Definition (Rank Support Learning RSL(n, k ,w , `))

Given a random parity check matrix H ∈Mn−k,n(Fq) and `
syndromes s i = He i for e i errors of same support E a subspace of
dimension w , find E .
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Difficult problems in rank metric

Definition (Ideal Rank Syndrome Decoding IRSD(n, k,w))

Given an ideal random parity check matrix H ∈Mn−k,n(Fq) and a
syndrome s = He for e an error of rank weight w(e) = w , find e.

Problematic with the structure :

Quantum attacks 1

Potential weaknesses

1. Ronald Cramer, Léo Ducas et Benjamin Wesolowski. “Mildly short
vectors in cyclotomic ideal lattices in quantum polynomial time”. In : Journal of
the ACM (JACM) 68.2 (2021), p. 1–26.
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Low Rank Parity Check Codes

An LRPC code is a code which admits a parity check matrix whose
coordinates belong to a subspace of Fqm of small dimension.

Definition (LRPC codes)

Let H = (hij)16i6n−k
16j6n

∈ F(n−k)×nqm be a full-rank matrix such that its

coordinates generate an Fq-subspace F of small dimension d :

F = 〈hij〉Fq .

Let C be the code with parity-check matrix H . By definition, C is an
[n, k] LRPC code of dual weight d . Such a matrix H is called a
homogeneous matrix of weight d and support F .
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Example

Let us consider again the field F8 = Vect(1, α, α2)

Example

H =

1 α α
α 0 α + 1
α α α


is of rank 3 as an Fqm -matrix but the Fq-subspace generated by its
coordinates is of dimension 2.

(1, α, α, α, 0, α + 1, α, α, α)→

1 0 0 0 0 1 0 0 0
0 1 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0
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LRPC decoding

Problem

Let E = 〈e1, ..., er 〉 an (unknown) subspace of Fqm of dimension r
and F = 〈f1, ..., fd〉 a (given) subspace of Fqm of dimension d .
Given an LRPC matrix H ∈ F n−k×n and s = He where e ∈ En,
find E .

The coordinates of s belong to the product space
EF = Vect{ef |e ∈ E , f ∈ F} = 〈e1f1, ..., er f1, ..., e1fd , ..., er fd〉.

The subspaces f −1i EF all contain E since for example
f −11 EF = 〈e1, ..., er , ..., f −11 e1fd , ..., f

−1
1 er fd〉.

So one can hope :

d⋂
i=1

f −1i EF = E
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LRPC decoding

Algorithm 1: Rank Support Recovery (RSR) algorithm

Data: F = 〈f1, ..., fd〉 an Fq-subspace of Fqm ,

s = (s1, · · · , sn−k) ∈ F(n−k)qm a syndrome of an error e of
weight r and of support E

Result: A candidate for the vector space E
//Part 1: Compute the vector space EF

1 Compute S = 〈s1, · · · , sn−k〉
//Part 2: Recover the vector space E

2 E ←
⋂d

i=1 f
−1
i S return E
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Failure probability

Two possible cases of failure :

S ( EF , the coordinates of the syndrome do not generate the
entire space EF , or

E ( S1 ∩ · · · ∩ Sd , the chain of intersection generates a
subspace strictly bigger than E .

Proposition

The Decoding Failure Rate of algorithm RSR is bounded from
above by :

qrd−(n−k)−1 + q−(d−1)(m−rd−r)
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Application of LRPC to cryptography

Definition (Key generation)

Let U = (A|B) an LRPC matrix of weight d .{
pk = H = (I |A−1B)
sk = U

Definition (Encaps)

Choose an error support E of dimension r . Pick a random error e in
En and send ciphertext c = He. The shared secret is Hash(E ).

Definition (Decaps)

Compute s = Ac = Ue and use LRPC decoding to find E .
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ROLLO-II parameters

Instance q n m r d Security DFR

ROLLO-II-128 2 189 83 7 8 128 2−134

ROLLO-II-192 2 193 97 8 8 192 2−130

ROLLO-II-256 2 211 97 8 9 256 2−136

Figure: Parameters for ROLLO-II.

Instance pk size sk size ct size Security

ROLLO-II-128 1941 40 2089 128

ROLLO-II-192 2341 40 2469 192

ROLLO-II-256 2559 40 2687 256

Figure: Resulting sizes in bytes for ROLLO-II using NIST seed expander
initialized with 40 bytes long seeds. The security is expressed in bits.
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ROLLO-I parameters

Instance q n m r d Security DFR

ROLLO-I-128 2 83 67 7 8 128 2−28

ROLLO-I-192 2 97 79 8 8 192 2−34

ROLLO-I-256 2 113 97 9 9 256 2−33

Figure: Parameters for ROLLO-I.

Instance pk size sk size ct size Security

ROLLO-I-128 696 40 696 128

ROLLO-I-192 958 40 958 192

ROLLO-I-256 1371 40 1371 256

Figure: Resulting sizes in bytes for ROLLO-I using NIST seed expander
initialized with 40 bytes long seeds. The security is expressed in bits.
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Idea

Definition (Key generation)

Let U = (A|B) an LRPC matrix of weight d .{
pk = H = (I |A−1B)
sk = U

Definition (Encaps)

Choose an error support E of dimension r . Pick ` random errors e i

in En for 1 ≤ i ≤ ` and send ciphertexts c i = He i . The shared
secret is Hash(E ).

Definition (Decaps)

Compute s i = Ac i = Ue i and use LRPC decoding with multiple
syndromes to find E .
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LRPC decoding with multiple syndromes

The LRPC decoding algorithm has several syndromes as inputs
s i = Ue i .

S = UV
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LRPC decoding with multiple syndromes

Algorithm 2: Rank Support Recovery (RSR) algorithm with multiple
syndromes

Data: F = 〈f1, ..., fd〉 an Fq-subspace of Fqm , S = (sij) ∈ F
(n−k)×`
qm

the ` syndromes of error vectors of weight r and support E
Result: A candidate for the vector space E
//Part 1: Compute the vector space EF

1 Compute S = 〈s11, · · · , s(n−k)`〉
//Part 2: Recover the vector space E

2 E ←
⋂d

i=1 f
−1
i S

3 return E
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New failure probability

Proposition

For k ≥ ` and for U and V random variables chosen uniformly in
F (n−k)×n and En×` respectively, the Decoding Failure Rate of
algorithm RSR(F ,UV , r) is bounded from above by :

(n − k)qrd−(n−k)` + q−(d−1)(m−rd−r)
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Parameters with an ideal structure

Instance q n k m r d ` Security DFR

ILRPC-MS-128 2 94 47 83 7 8 4 128 2−126

ILRPC-MS-192 2 134 67 101 8 8 4 192 2−198

Figure: Parameters for ILRPC-MS

Instance pk size sk size ct size Security

ILRPC-MS-128 488 40 1, 951 128

ILRPC-MS-192 846 40 3, 384 192

Figure: Resulting sizes in bytes for ILRPC-MS using NIST seed expander
initialized with 40 bytes long seeds. The security is expressed in bits.
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Parameters without an ideal structure

Instance q n k m r d ` Security DFR

LRPC-MS-128 2 34 17 113 9 10 13 128 2−126

LRPC-MS-192 2 42 21 139 10 11 15 192 2−190

Figure: Parameters for LRPC-MS

Instance pk size sk size ct size Security

LRPC-MS-128 4, 083 40 3, 122 128

LRPC-MS-192 7, 663 40 5, 474 192

Figure: Resulting sizes in bytes for LRPC-MS using NIST seed expander
initialized with 40 bytes long seeds. The security is expressed in bits.
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Comparison to other KEMs

Instance 128 bits 192 bits
LRPC-MS 7,205 12,445
Loong.CCAKEM-III 18,522 N/A
FrodoKEM 19,336 31,376
Loidreau cryptosystem 36,300 N/A
Classic McEliece 261,248 524,348

Figure: Comparison of sizes of unstructured post-quantum KEMs. The
sizes represent the sum of public key and ciphertext expressed in bytes.

Instance 128 bits 192 bits
ILRPC-MS 2,439 4,230
BIKE 3,113 6,197
ROLLO-II 4,030 4,810
HQC 6,730 13,548

Figure: Comparison of sizes of structured code-based KEMs. The sizes
represent the sum of public key and ciphertext expressed in bytes.
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Specificity to rank metric

Sending errors with the same support does not make sense in
Hamming metric

Additional information given by multiple syndromes can be
specifically leveraged by LRPC decoding algorithm
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IND-CPA proof

Definition (LRPC indistinguishability)

Given a matrix H ∈ F(n−k)×kqm , distinguish whether the code C with
the parity-check matrix (I n−k |H) is a random code or an LRPC
code of weight d .

Definition (Rank Support Learning RSL(n, k ,w , `))

Given a random parity check matrix H ∈Mn−k,n(Fq) and `
syndromes s i = He i for e i errors of same support E a subspace of
dimension w , find E .

⇒ considered difficult as long as ` ≤ k(r − 3) (without ideal
structure) or ` ≤ r − 3 (with ideal structure).
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Objective

We fix E and F subspaces of Fqm of dimension r and d respectively
such that EF is of dimension rd . We also impose q = 2.

Theorem

For n1 + n2 ≤ n and for U and V random variables chosen
uniformly in F n1×n and En×n2 (respectively),

P(Supp(UV ) 6= EF ) ≤ n1q
rd−n1n2
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Product of matrices



∗ · · · ∗
...

...
... V

...
...

...
∗ · · · ∗


∗ · · · · · · · · · ∗... U

...
∗ · · · · · · · · · ∗


∗ · · · ∗

... UV
...

∗ · · · ∗
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Impossible to use Leftover Hash Lemma

Lemma (Leftover Hash Lemma)

Let {Φr}r∈R be a (1 + α)/m-almost universal family of hash
functions from S to T , where m := |T |. Let H and X be
independent random variables, where H is uniformly distributed over
R, and X takes values in S . If β is the collision probability of X ,
and δ is the distance of (H,ΦH(X )) from uniform on R × T , then
δ ≤ 1/2

√
mβ + α.

U× V −→ UV
dn1npossibilities rn2npossibilities� (rd)n1n2possibilities
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Main proof idea

We fix φ a linear form on EF and we study the probability to have
φ(UV ) = 0.

Lemma

We denote v a column vector in En.
For a fixed U , ϕU : v 7→ φ(Uv) is a linear map from En to Fn1q so
the distribution of φ(Uv) is uniform in Im(ϕU) ⊂ Fn1q .

We shall study the rank of ϕU .
Indeed, when Rank(ϕU) = i ,

P(φ(Uv) = 0) = q−i

P(φ(UV ) = 0) = q−in2
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Defining basis

By duality, the linear form φ is associated to a vector τ in EF such
that φ(x) = 〈τ, x〉.
τ can be written :

τ =
s∑

i=1

ei fi

where (e1, ..., es) and (f1, ..., fs) are linearly independent elements in
E and F . s is also called the tensor rank of τ .

These tuples can be completed to form basis (e1, ..., es , ..., er ) and
(f1, ..., fs , ..., fd).
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Rank of ϕU

We denote U(k)
ij the coordinates of U ij in the basis we chose

previously.

ϕU((0, ..., 0,

j-th

I
ek , 0, ..., 0)) = φ(U(0, ..., 0,

j-th

I
ek , 0, ..., 0))

= (φ(ekU ij))1≤i≤n1

= (〈τ,
∑

U(l)
ij ek fl〉)1≤i≤n1

=

{
(U(k)

ij )1≤i≤n1 k ≤ s

0 k > s
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Rank of ϕU

So the matrix of ϕU looks like



∗ · · · ∗ 0 · · · 0
∗ · · · ∗ 0 · · · 0
...

...
...

...
...

...
...

...
∗ · · · ∗ 0 · · · 0
∗ · · · ∗ 0 · · · 0



ns n(d − s)

n1

where each ∗ is an independent uniform random variable.
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End of the proof

The rank ϕU thus follows the law of a random variable Rs .

P(Supp(UV ) ⊂ ker(φτ )) =

n1∑
i=0

P(Supp(UV ) ⊂ ker(φτ )|Rank(ϕU) = i)

P(Rank(ϕU) = i)

=

n1∑
i=0

q−in2P(Rank(ϕU) = i)

=

n1∑
i=0

q−in2P(Rs = i)

= E(q−n2Rs )

≤ n1q
−n1n2
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Implementations

Efficient

Easy to use

Isochronous (or constant-time) ⇒ no conditional branching on
a secret expression
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Long computations in LRPC codes cryptography

Definition (Key generation)

Let U = (A|B) an LRPC matrix of weight d .{
pk = H = (I |A−1B)
sk = U
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Long computations in LRPC codes cryptography

Definition (Key generation)

Let U = (x |y) an ideal LRPC matrix of weight d .{
pk = H = (I |x−1y)
sk = U

Inversion in the field K := F2m [X ]�(P) ≈ F(2m)n
P is an irreducible polynomial of degree n with coefficients in F2m .
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Natural inversion algorithm

Find u, v such that ux + vP = 1.

i quotient qi remainder ri ui vi
0 P 1 0

1 x 0 1

. . .

i ri−2/ri−1 ri−2 − qi ri−1 ui−2 − qiui−1 vi−2 − qivi−1
. . .

k qk rk uk vk
k + 1 qk+1 0

Table: Extended Euclidean algorithm

⇒ can lead to cache attacks
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A naive approach

Use Euclidean algorithm with naive isochronous techniques.

Set the number of iterations to a constant.

Make euclidean divisions isochronous ⇒ slow and difficult to
implement.
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Itoh-Tsuiji algorithm

Idea 2 : compute x−1 = (x r )−1 x r−1 where :

r = 1 + 2m + 22m + ...+ 2(n−1)m =
2mn − 1

2m − 1

It is easy to prove that x r ∈ F2m .

This reduces the inversion in F(2m)n to :

The computation of x r−1 and x r , which can easily be made
isochronous ;

An inversion in the smaller field F2m ;

n multiplications in F2m .

2. Toshiya Itoh et Shigeo Tsujii. “A fast algorithm for computing multiplica-
tive inverses in GF (2m) using normal bases”. In : Information and computation
78.3 (1988), p. 171–177.
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Switching to normal basis

Usually, an element x ∈ K = F(2m)n is represented in the power
basis {1,X , ...,X n−1} :

x = x0 + x1X + ...+ xn−1X
n−1

with xi ∈ F2m .
But it can be more practical to use a normal basis :

x = x0α + x1α
2m + ...+ xn−1α

2(n−1)m

where α is chosen such that (α, α2m , α22m , ..., α2(n−1)m
) is a basis of

K seen as a F2m -vector space.
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Characteristics of a normal basis

Easy to perform operation x 7→ x2
m

Multiplication : very expensive

x · y = (
∑
i

xiα
2im) · (

∑
j

yjα
2jm)

=
∑
i ,j

xiyjα
2im+2jm

=
∑
i ,j ,k

xiyj ti ,j ,kα
2ik

Except if you find an optimal normal basis
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Optimal normal basis

Definition (Optimal normal basis)

A optimal normal basis is a basis (α, α2m , α22m , ..., α2(n−1)m
) such

that for all i , αα2im = α2aim + α2bim

Scheme n ONB ?

ROLLO-I-128 83 3

ROLLO-I-192 97 7

ROLLO-I-256 113 3

ROLLO-II-128 189 3

ROLLO-II-192 193 7

ROLLO-II-256 211 7

Table: Existence of an optimal normal basis depending on the value n for
each ROLLO set of parameters
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Smarter square and multiply

r − 1 = 2m + 22m + ...+ 2(n−1)m

Square & Multiply ⇒ n − 1 multiplications.
We find a way to do log(n).

r − 1 = 2m

log(n−1)∑
i=1

(2m2i − 1) 2m(t mod 2i )
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Performance results

ROLLO-I-128 ROLLO-I-256 ROLLO-II-128

Non-isochronous
algorithm 1 1,030,500 1,702,620 4,295,704

ROLLO-I-128 ROLLO-I-256 ROLLO-II-128

Isochronous
algorithm 2 11,204,649

Isochronous
algorithm (our

work 3)
3,514,016 5,785,700 22,859,614

Table: Duration of the key generation in CPU cycles

1. Nicolas Aragon et al. Rank-Based Cryptography Library. url : https:
//rbc-lib.org/.

2. Carlos Aguilar-Melchor et al. “Constant time algorithms for ROLLO-I-
128”. In : SN Computer Science 2.5 (2021), p. 1–19.

3. Carlos Aguilar-Melchor et al. “Fast and Secure Key Generation for
Low Rank Parity Check Codes Cryptosystems”. In : 2021 IEEE International
Symposium on Information Theory (ISIT). IEEE. 2021, p. 1260–1265.

https://rbc-lib.org/
https://rbc-lib.org/
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Further refinement of our work

ROLLO-I-128 ROLLO-I-256 ROLLO-II-128

Non-isochronous
algorithm

1,030,500 1,702,620 4,295,704

ROLLO-I-128 ROLLO-I-256 ROLLO-II-128

Isochronous
algorithm

11,204,649

Isochronous
algorithm (our

work)
3,514,016 5,785,700 22,859,614

Isochronous
algorithm 1 851,823 1,477,519 4,663,096

Table: Duration of the key generation in CPU cycles

1. Tung Chou et Jin-Han Liou. “A Constant-time AVX2 Implementation of
a Variant of ROLLO”. In : IACR Transactions on Cryptographic Hardware and
Embedded Systems (2022), p. 152–174.



Background on rank metric Presentation of LRPC-MS Decoding failure rate Bonus Conclusion and perspectives

State of the art implementation of ROLLO
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Summary

1 Background on rank metric and LRPC codes
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3 Analysis of the decoding failure rate
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5 Conclusion and perspectives
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Conclusion

New rank metric based cryptosystem with competitive
parameters and no ideal structure

Probabilistic result on the support of the product of two
random matrices

Additional idea to make m down by 10 %

The approach can generalize to RQC but is less efficient in that
case
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Thank you for your attention !
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ANNEX

An explicit method to build an optimal normal basis of F(2m)n
over F2m .

Theorem

Let n be an integer prime to m and such that 2n + 1 is a prime and
assume that either :

1 2 is primitive in Z2n+1, or

2 2n + 1 = 3 (mod 4) and 2 generates the quadratic residues in
Z2n+1.

Then α = γ + γ−1 generates an optimal normal basis of K over
F2m , where γ is a primitive (2n + 1)-th root of unity.
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